azu_td_3158075_sip1_

Loading...
Intrusion-related mineralization in the central sector of the Sierra Madre Oriental, Mexico Item Type

text; Dissertation-Reproduction (electronic)

Authors

Castro-Reino, Sergio Francisco

Publisher

The University of Arizona.

Rights

Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date

07/11/2018 13:59:08

Link to Item

http://hdl.handle.net/10150/280679

INTRUSION-RELATED MINERALIZATION IN THE CENTRAL SECTOR OF THE SIERRA MADRE ORIENTAL, MEXICO

by Sergio Francisco Castro-Reino

Copyright

Sergio Francisco Castro-Reino 2 0 0 4

A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY IN GEOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2004

UMI Number: 3158075

Copyright 2004 by Castro-Reino, Sergio Francisco

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI UMI Microform 3158075 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346

2

The University of Arizona ® Graduate College

As members of the Final Examination Committee, we certify that we have read the dissertation prepared by

SERGIO FRANCISCO CASTRO-REINO

entitled INTRUSION-RELATED MINERALIZATION IN THE CENTRAL SECTOR OF THE SIERRA MADRE ORIENTAL, MEXICO

and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of

DOCTOR OF PHILOSOPHY

/lug MARK D. BARTON

PH

date-'

S E. SEEDORFF

date//

ENCER R. TITLEY

date

date

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

'/ Dissertation Director:

MARK D. BARTON

ZJ>0^ date

3

STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder.

Signed:

4 ACKNOWLEDGEMENTS I would like to thank my advisor Dr. Mark D. Barton for suggesting the subject of this dissertation and staying with me during the process of shaping it into its present form. I would also like to thank my other committee members for their insights and suggestions, as well as for acconmiodating their schedules at the last minute to allow this dissertation to be successfully presented. The research herein was supported by the University of Arizona-Industry-U.S. Geological Survey Mexico Consortium and the participating companies; the University of Arizona-U.S. Geological Survey Center for Mineral Resources; as well as by National Science Foundation grant EAR 95-27009 to Dr. Mark Barton. I would like to express my gratitude to the following professionals and companies for their support and hospitality, guidance and help in collecting samples from a wide range of localities, and for sharing their knowledge of the different districts with me: Ing. Justo Wong, Ing. Salvador Martinez and the staff of Mazapil Copper Company of Zacatecas S.A. de C.V., at Concepcion del Oro; Ing. Pina, Ing. Felix Espinoza, Ing. Edgar Armijo and the staff of Minera Tayahua S.A. de C.V. at Terminal de Providencia; senior project geologist Matthew Wunder, Ing. Hipolito Monje and Noranda Minerals Inc. at Melchor Ocampo and during regional reconnaissance in north-central Mexico; Tom Patton and the staff of Western Copper Holdings at Penasquito; David Simpson, Nicholas Hawkes and Minera Kennecott S.A. de C.V. during field reconnaissance of different intrusive systems in the Concepcion del Oro area. On a more personal note, I would also like to express my gratitude here to Dr. Peter Megaw for his hospitality and for providing historical documentation that would have been nearly impossible to find otherwise. I also would like to thank D. Jesus Ovalle and the authorities in the town of Concepcion del Oro, for allowing me to make use of the facilities at Puerto del Dique. My sincere appreciation and friendship goes to D. Jorge Gonzalez and his family for his hospitality and knowledge on a great variety of regional and historic subjects. I also want to thank here Damian Hodkinson and Dr. Clark Isachsen for the strontium and neodymium isotopic analyses performed at the Radiogenic Isotope Facility; as well as Mark Rollog and Leo Verdugo for the oxygen isotope analyses performed at the Stable Isotope Laboratory in the Geosciences Department. My gratitude goes also to my colleagues at Desert Archaeology, Inc., fellow students at the Geosciences Department, friends and family for their unwavering support. Thanks to Desert Archaeology, Inc. I have been able to present this work. In particular, my gratitude goes to Dr. William Doelle and Dr. Elizabeth Miksa who accommodated my need to earn a living as well as finish this dissertation, and graciously allowed me to use the resources of the company and take time off for its completion. I wish to acknowledge fellow students and professionals Ruben Padilla, Victor Valencia and Lukas Zurcher. Finally, I am grateful to my friends Ursula and Patrick, the members of the Saturday choir, as well as many others in the Newman Center, who always had words of encouragement and provided for solace and a measure of sanity through it all. I also want to thank here Denis and Alejandra Hall, as well as Elsa Ramos Echeverria, who received me in their homes and treated me like family. To my family, but specially to my mother, who have always stood by me in spite of the distance and the lengthening years of absence, I want to express my deepest gratitude.

5

TABLE OF CONTENTS LIST OF ILLUSTRATIONS

9

LIST OF TABLES

15

ABSTRACT

18

Chapter I

INTRODUCTION AND STATEMENT OF THE PROBLEM

1.1 Historical background

19 22

1.1.1 Concepcion del Oro and Providencia

22

1.1.2 Noche Buena

25

1.1.3 Santa Rosa

27

1.1.4 Other districts

28

1.1.4.1 San Feliciano, Zacatecas

28

1.1.4.2 Cerro Pedregoso, Coahuila

31

1.1.4.3 El Saltillito, Zacatecas

33

1.1.4.4 Matehuapil and El Rabioso, Zacatecas

35

1.1.4.5 Rocamontes, Coahuila

37

1.1.4.6 Melchor Ocampo, Zacatecas

39

1.1.4.7 San Rafael, Zacatecas

42

1.1.4.8 Pico de Teyra, Zacatecas

43

1.1.4.9 Cerro Prieto, Durango

44

1.2 Regional geologic setting

45

1.3 Magmatism in the central sector of the Sierra Madre Oriental: petrography, alteration and mineralization 49 1.3.1 Magmatism

53

1.3.2 Alteration

55

1.3.3 Mineralization

58

Chapter N PETROGRAPHY AND GEOCHEMISTRY IN THE CONCEPCION DEL ORO AREA ..

69

2.1 Introduction

69

2.2 Methodology

69

2.2.1 Sample preparation

69

6

TABLE OF CONTENTS - Continued 2.2.2 Data Analysis 2.3 Geology, petrography, major, trace and REE geochemistry of igneous rocks in the Concepcion del Oro area 2.3.1

Local geology

72 74 74

2.3.1.1 Concepcion del Oro

74

2.3.1.2 Providencia

80

2.3.1.3 Noche Buena

84

2.3.1.4 Santa Rosa

88

2.3.2 Major element geochemistry

91

2.3.2.1 Concepcion del Oro

91

2.3.2.2 Providencia

96

2.3.2.3 Noche Buena

99

2.3.2.4 Santa Rosa

101

2.3.3 Trace element geochemistry

106

2.3.3.1 Concepcion del Oro

106

2.3.3.2 Providencia

110

2.3.3.3 Noche Buena

113

2.3.3.4 Santa Rosa

115

2.3.4 Discussion

120

2.4 Stable and radiogenic isotope geochemistry of igneous rocks in the Concepcion del Oro region 127 2.4.1 Rb/Sr isotope geochemistry

131

2.4.2 Sm/Nd isotope geochemistry

131

2.4.3 Oxygen isotope geochemistry

135

2.4.4 Discussion

140

2.4.5 Comparisons

144

1 TABLE OF CONTENTS - Continued Chapter M MINERAL CHEMISTRY OF ROCK-FORMING MINERALS IN IGNEOUS ROCKS FROM THE CONCEPCION DEL ORO AREA 153 3.1 Introduction

153

3.2 Methodology

153

3.2.1 Sample selection

153

3.2.2 Data analysis

154

3.3 Feldspars compositions

156

3.3.1 Concepcion del Oro

159

3.3.2 Providencia

161

3.3.3 Noche Buena

164

3.3.4 Santa Rosa

166

3.4 Pyroxene compositions

168

3.4.1 Concepcion del Oro

169

3.4.2 Providencia

170

3.4.3 Noche Buena

171

3.5 Amphibole compositions

172

3.5.1 Concepcion del Oro

174

3.5.2 Providencia

177

3.5.3 Noche Buena

179

3.5.4 Santa Rosa

181

3.6 Biotite compositions

183

3.6.1 Concepcion del Oro

184

3.6.2 Providencia

186

3.6.3 Noche Buena

188

3.6.4 Santa Rosa

190

3.7 Fe-Ti-(Mn) oxide compositions

191

3.7.1 Concepcion del Oro

192

3.7.2 Providencia

194

3.7.3 Noche Buena

196

8

TABLE OF CONTENTS - Continued 3.7.4 Santa Rosa

197

3.8 Intensive variables

198

3.8.1 Feldspar geothermometry

200

3.8.2 Amphibole geobarometry

203

3.8.3 Volatile contents

207

3.8.3.1 Concepcion del Oro

211

3.8.3.2 Providencia

214

3.8.3.3 Noche Buena

216

3.8.3.4 Santa Rosa

218

3.9 Comparisons

220

3.9.1 Concepcion del Oro area

220

3.9.2 Mesa Central of Mexico

228

3.9.3 Selected systems in the American Southwest and the Sierra Nevada

237

3.9.4 Other circum-pacific magmatic arcs

245

Chapter IV SUMMARY AND DISCUSSION

254

4.1 Introduction

254

4.2 Whole-rock geochemistry

256

4.2.1 Major and trace element geochemistry

256

4.2.2 Isotope geochemistry

258

4.3 Mineral geochemistry and derived intensive variables

260

4.3.1 Mineral compositions

260

4.3.2 Intensive variables

264

4.3.3 Volatile contents

267

4.4 Summary

270

4.5 Discussion

273

Chapter V CONCLUSIONS

278

APPENDIX 1

280

APPENDIX N

290

REFERENCES

378

LIST OF ILLUSTRATIONS FIGURE 1,

FIGURE 1.1.1,

FIGURE 1.1.2,

FIGURE 1.1.4,

FIGURE 1.1.4.1:

FIGURE 1.1.4.2:

FIGURE 1.1.4.3:

FIGURE 1.1.4.4:

FIGURE 1.1.4.5:

FIGURE 1.1.4.6:

FIGURE 2.3.1.1, FIGURE 2.3.1.2, FIGURE 2.3.1.3,

Synoptic regional geologic map of the central sector of the Sierra Madre Oriental with generalized geologic units and their temporal position. Extracted from Ortega Gutierrez (1992): Carta Geologica de la Republica Mexicana, escala 1:2,000,000. Digital version by the University of Arizona - Industry - U.S. Geological Survey Mexico Minerals Consortium 21 Overview geologic map of the Concepcion del Oro, Providencia and Santa Rosa igneous centers, delineated from Mapes Vasquez et al. (1964) 24 Overview geologic map of the Noche Buena intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-62 Concepcion del Oro 26 Index geologic map of the Concepcion del Oro area with locations of other localities studied, assembled from CETENAL Carta Geologica de la Republica Mexicana, escala 1:250,000, hojas G-13 12, Juan Aldama, and G-14 10 Concepcion del Oro 29 Overview geologic map of the San Feliciano intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-72 Tanquecillos 30 Overview geologic map of the Cerro Pedregoso intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-64 El Salvador 32 Overview geologic map of El Saltillito intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G14 C-74 El Salado 34 Overview geologic map of the Matehuapil and El Rabioso intrusions, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hojas G-14 C-63, Presa de San Pedro, and G-14 C-64, El Salvador 36 Overview geologic map of the Rocamontes intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-63, Presa de San Pedro 38 Overview geologic map of the Melchor Ocampo intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-62, Melchor Ocampo 41 Simplified overview map of the Concepcion del Oro intrusion with sample locations and igneous boundaries 78 Simplified overview map of the Providencia intrusion with sample locations and igneous boundaries 82 Simplified overview map of the Noche Buena intrusion with sample locations and igneous boundaries 86

10

LIST OF ILLUSTRATIONS - Continued FIGURE 2.3.1.4, FIGURE 2.3.2.1.1, FIGURE 2.3.2.1.2, FIGURE 2.3.2.1.3, FIGURE 2.3.2.2.1, FIGURE 2.3.2.2.2, FIGURE 2.3.2.2.3, FIGURE 2.3.3.1.1, FIGURE 2.3.3.1.2, FIGURE 2.3.3.2.1, FIGURE 2.3.3.2.2, FIGURE 2.3.3.2.3,

FIGURE 2.3.3.2.4, FIGURE 2.4.1,

FIGURE 2.4.2,

FIGURE 2.4.3.1, FIGURE 2.4.3.2,

FIGURE 2.4.3.3,

Simplified overview map of the Santa Rosa igneous center with sample locations 86 Major element Harker diagrams for samples of the Concepcion del Oro intrusion 93 Alteration and norm-based discrimination diagrams for Concepcion del Oro 94 Major element discrimination diagrams for Concepcion del Oro. 95 Major element Harker diagrams for Providencia, Noche Buena and Santa Rosa igneous center samples 102 Alteration, norm-based discrimination diagrams for Providencia, Noche Buena and Santa Rosa 103 Discrimination diagrams for Providencia, Noche Buena and Santa Rosa 104 Selected trace element tectonic discrimination diagrams for samples of the Concepcion del Oro intrusion 108 Selected trace and rare earth element diagrams for samples of the Concepcion del Oro intrusion 109 Trace element tectonic discrimination diagrams for igneous samples in the Concepcion del Oro area 116 Trace element spidergrams for Providencia, Noche Buena and Santa Rosa igneous samples 117 Rare earth element diagrams for Providencia, Noche Buena and Santa Rosa igneous samples together with a comparative range of samples from the Concepcion del Oro intrusion 118 Comparative discrimination Th/U diagram for the different igneous centers in the Concepcion del Oro area 119 Harker diagrams for Rb, Sr, and correlation diagrams between ^^Sr/^®Sr against (1/Sr) x 1000 (with ^^Sr/^^Sr vs. silica inset) for samples from the Concepcion del Oro area 133 Harker diagrams for Sm, Nd, and correlation diagram between '"^^Nd/'^^Nd vs. Eu/Eu* (with ''^^Nd/^'^'^Nd vs. silica inset) for samples from the Concepcion del Oro area 134 6'^Oquartz values of intrusive samples in the Concepcion del Oro area in relation to general ranges of igneous rocks 137 6'^Oquartz/6^^0plagioclase diagrams with lines of constant temperature for the specific sample anorthite component, after Matsuhisa et al. (1979) 137 5'^Oquartz/6^^0plagioclase diagrams with lines of constant temperature for the specific sample anorthite component, after Matsuhisa etal. (1979) 138

11

LIST OF ILLUSTRATIONS - Continued FIGURE 2.4.4.1,

^^Sr/^®Sr vs. ^^Rb/^^Sr and '^^Nd/'^^Nd against '''Sm/'^^Nd for samples from the Concepcion del Oro area 142

FIGURE 2.4.4.2,

8Sri vs. £Ndi and 5'^Oquartz vs. ESr, for samples from the Concepcion del Oro area with Sr isotope values from global marine data (Veizer et al., 1999) and 5^^0 values from local sedimentary host rocks (Sawkins, 1962). £Sri values for quartz separates from a strongly altered intrusive sample from Sol y Luna correspond to the

FIGURE 2.4.5.1,

FIGURE 2.4.5.2,

FIGURE 2.4.5.3,

FIGURE 2.4.5.4,

less altered sample SMCS-7. 8Sri values for sedimentary formations were calculated from the global sedimentary values for the Oxfordian (180Ma, Zuloaga Fm.), Barremian (125Ma, Cupido Fm.) and Albian (80Ma, Cuesta del Cura Fm.) stages 143 Comparative QAP diagrams between Concepcion del Oro area igneous samples and regional suites in the central sector of the Sierra Madre Oriental (this work), mineralized igneous systems in the Mexican Plateau (Barton & Megaw, unpub. data; Graf, 1997; Gilmer et al., 1988; Ruiz, 1983; Tuta, 1980) and Arizona porphjry copper systems (Lang, 1990) 146 Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and regional igneous suites in the central sector of the Sierra Madre Oriental (this work). 147 Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and mineralized igneous systems in the Mexican Plateau (Barton and Megaw, unpublished data; Graf, 1997; Gilmer et al., 1988; Ruiz, 1983; Tuta, 1980)... 148 Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and selected porphjry copper deposits in Arizona (Lang, 1990) 149

FIGURE 2.4.5.5,

Comparative £Nd vs. time diagrams between Concepcion del Oro area igneous samples, mafic intrusives in the central sector of the Sierra Madre Oriental and the San Martin pluton (Graf, 1997); and all intrusive samples in the central sector including two representative lower crustal xenoliths from the Los Contreras maar in San Luis Potosi (Ruiz et al., 1988) 151

FIGURE 2.4.5.6,

Comparative ENd, vs. ESri diagrams between Concepcion del Oro area, mafic intrusives in the central sector of the Sierra Madre Oriental, and San Martm pluton igneous samples (Graf, 1997), including representative lower crustal xenoliths from San Luis Potosi (Ruiz et al., 1988) 152

12

LIST OF ILLUSTRATIONS - Continued FIGURE 3.3.1,

FIGURE 3.3.2,

FIGURE 3.3.3,

FIGURE 3.3.4,

FIGURE 3.4.1,

FIGURE 3.4.2,

FIGURE 3.4.3,

FIGURE 3.5.1.1,

FIGURE 3.5.1.2, FIGURE 3.5.2.1,

FIGURE 3.5.3.1,

Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Concepcion del Oro intrusion 160 Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Providencia intrusion 163 Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Noche Buena intrusion 165 Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus calculated whole rock quartz content (molecular norm) for the Santa Rosa igneous center 167 Range of p3Toxene compositions from electron microprobe data according to Deer et al. (1963) for intermediate and late phases of the Concepcion del Oro intrusion 169 Range of pyroxene compositions from electron microprobe data according to Deer et al. (1963) for the late phases of the Providencia intrusion 170 Range of pyroxene compositions from electron microprobe data according to Deer et al. (1963) for the early and intermediate phases of the Noche Buena intrusion 171 Range of amphibole compositions compositions according to nomenclature by Leake (1978) and within the amphibole quadrilateral for early and late phases of the Concepcion del Oro intrusion 175 fluorine vs. chlorine contents for early and late phases of the Concepcion del Oro intrusion 176 Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for the late phases of the Providencia intrusion. 178 Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for intermediate and late phases of the Noche Buena intrusion 180

13

LIST OF ILLUSTRATIONS - Continued FIGURE 3.5.4.1,

Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for the Santa Rosa igneous center 182 FIGURE 3.6.1, Range of biotite compositions from electron microprobe data according to nomenclature by Gunow (1980) and halogen content, for early through late phases of the Concepcion del Oro intrusion. 185 FIGURE 3.6.2, Range of biotite compositions from electron microprobe data according to nomenclature by Gunow (1980) and halogen content, for early through late phases of the Providencia intrusion 187 FIGURE 3.6.3, Range of biotite compositions from electron microprobe data according to nomenclature by Gunow (1980) and halogen content, for phase n of the Noche Buena intrusion 189 FIGURE 3.6.4, Range of biotite compositions from electron microprobe data according to nomenclature by Gunow (1980) and halogen content, for sample SMRN-1 of the Santa Rosa igneous center 189 FIGURE 3.7.1, Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^"^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Concepcion del Oro intrusion 193 FIGURE 3.7.2, Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^"^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Providencia intrusion 195 FIGURE 3.7.3, Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^"^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Noche Buena intrusion 195 FIGURE 3.7.4, Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^"^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the Santa Rosa igneous center 197 FIGURE 3.8.2, Comparative plot of pressure estimates obtained from Al-inhornblende geobarometer calibrations by Schmidt (1992) for different intrusive phases in the Concepcion del Oro area 205 FIGURE 3.8.3.1.1, Comparative F vs. CI diagram between amphiboles and biotites for early and late phases of the Concepcion del Oro intrusion 212 FIGURE 3.8.3.1.2, f02 vs. 1/T and log f02 vs. log fll20 diagrams for early and late phases of the Concepcion del Oro intrusion 213 FIGURE 3.8.3.2, Comparative F vs. CI diagram between amphiboles and biotites, f02 vs. 1/T and log f02 vs. log fH20 diagrams for the late phases of the Providencia intrusion 215

14

LIST OF ILLUSTRATIONS - Continued FIGURE 3.8.3.3,

FIGURE 3.8.3.4,

FIGURE 3.9.1.1,

FIGURE 3.9.1.2,

FIGURE 3.9.1.3,

FIGURE 3.9.2.1,

FIGURE 3.9.2.2,

FIGURE 3.9.2.3,

FIGURE 3.9.2.4,

FIGURE 3.9.3.1,

Comparative F vs. CI diagram between amphiboles and biotites, fOa vs. I/T and log f02 vs. log fH20 diagrams for intermediate and late phases of the Noche Buena intrusion 217 Comparative F vs. CI diagram between amphiboles and biotites, f02 vs. 1/T and log fOi vs. log fHiO diagrams in the Santa Rosa igneous center 219 Comparative summary illustration of average feldspar, pyroxene, amphibole and biotite compositions for the different phases of Concepcion del Oro area intrusions 225 Comparative summary illustration of halogen contents in amphiboles and biotites, oxygen and water fugacities derived from biotite data for the different phases of the Concepcion del Oro area intrusions. 226 Comparative plot of granitoid source lithologies for the different intrusive phases in the Concepcion del Oro area, after Ague and Brimhall (1988) 227 Comparative summary illustration of average amphibole compositions between the mafic intrusions from NE Mexico (Hamblock, 2002), the San Martm pluton (Graf, 1997) and the intrusives in the Concepcion del Oro area 233 Summary illustration of average halogen contents in amphiboles and/or biotites in mafic intrusions in NE Mexico (Hamblock, 2002), the San Martm pluton (Graf, 1997) and the Concepcion del Oro area intrusions 234 Comparative summary illustration of average biotite compositions between the mafic intrusions from NE Mexico (Hamblock, 2002), the San Martm pluton (Graf, 1997), selected mid-Tertiary felsic igneous rocks in the Mesa Central (Ruiz, 1983) and the intrusives in the Concepcion del Oro area 235 Comparison of granitoid source lithologies, after Ague and Brimhall (1988b), between the mafic intrusions in NE Mexico (Hamblock, 2002), the San Martm pluton (Graf, 1997), selected mid-Tertiary felsic igneous rocks in the Mesa Central (Ruiz, 1983) and the Concepcion del Oro area intrusions 236 Summary illustration of average halogen contents in amphiboles and/or biotites from the Ray porphyry system (Bank, 1976), selected plutons in the central Sierra Nevada batholith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions 241

15

LIST OF ILLUSTRATIONS - Continued FIGURE 3.9.3.2,

FIGURE 3.9.3.3,

FIGURE 3.9.3.4,

FIGURE 3.9.4,

Summary illustration of halogen contents in biotites of the Last Chance and Bingham stocks (Kesler et al., 1975; Jacobs and Parry, 1976), the Santa Rita and Hanover-Fierro system (Jacobs, 1976), and the Mineral Hill system (Kestler et al., 1975), with comparative values from the different Concepcion del Oro area intrusive phases. 242 Comparative summary illustration of average biotite compositions between the Last Chance and Bingham quartzmonzonites (Moore and Czamanske, 1973), the Ray porphyry system (Bank, 1976), selected plutons in the central Sierra Nevada batholith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions 243 Comparison of granitoid source lithologies, after Ague and Brimhall (1988b), between the Last Chance and Bingham quartz-monzonites (Moore and Czamanske, 1973), the Santa Rita and Hanover-Fierro porphjry system (Jacobs, 1976), selected plutons in the central Sierra Nevada batholith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions 244 Summary illustration of average halogen contents in amphiboles and/or biotites from Jurassic and Cretaceous plutons in South Korea (Tsusue et al., 1981), average biotite compositions and granitoid Itype classification, after Ague and Brimhall (1988b) 250

16

LIST OF TABLES TABLE L3, TABLE 1.3.3.1,

Age date compilation for intrusive centers in the Mexican Plateau and adjacent central sector of the Sierra Madre Oriental 51 Correlation table of localities with documented radiometric ages, mineralization types, occurrences, observed igneous lithologies and associated alteration assemblages for selected intrusive centers in the central sector of the Sierra Madre Oriental (eastern intrusive centers). 61

TABLE 1.3.3.2,

Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Concepcion del Oro district 62 TABLE 1.3.3.3, Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Providencia district 64 TABLE 1.3.3.4, Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Noche Buena district 65 TABLE 1.3.3.5, Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the smaller districts/occurrences in the central sector of the Sierra Madre Oriental 66 TABLE 1.3.3.6, Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Melchor Ocampo district 67 TABLE 1.3.3.7, Correlation table of localities with documented radiometric ages, mineralization types, occurrences, observed igneous lithologies and associated alteration assemblages for selected intrusive centers in the central sector of the Sierra Madre Oriental (western intrusive centers) 68 TABLE 2.3.1.1, Qualitative mineral composition of igneous phases in the Concepcion del Oro intrusion 76 TABLE 2.3.1.2, Qualitative mineral composition of igneous phases in the Providencia intrusion 81 TABLE 2.3.1.3, Qualitative mineral composition of igneous phases in the Noche Buena intrusion 85 TABLE 2.3.1.4, Qualitative mineral composition of igneous phases in the Santa Rosa igneous center 88 TABLE 2.3.3.1.1, Summary trace and REE data for samples from the Concepcion del Oro intrusion 107 TABLE 2.3.3.2.1, Summary trace and REE data for samples from the Providencia, Noche Buena and Santa Rosa igneous centers 115

17

TABLE 2.3.4,

TABLE 2.4, TABLE 2.4.3, TABLE 3.3,

TABLE 3.4, TABLE 3.5,

TABLE 3.8.1,

TABLE 3.8.2,

TABLE 3.8.3,

TABLE 3.9,

Summary REE data for igneous samples from the Concepcion del Oro, Providencia, Noche Buena and Santa Rosa igneous centers; range and average values for the main trend in the Concepcion del Oro intrusion 124 Rb, Sr, Sm and Nd trace element contents and measured isotope ratios for samples from the Concepcion del Oro area 129 Oxygen isotope values of quartz and plagioclase separates for samples from the Concepcion del Oro area 136 Average composition and range of plagioclase and K-feldspars; and average temperature of plagioclase-potassium feldspar pairs after Stormer (1975) for phases of the different intrusive centers in the Concepcion del Oro area 157 Average composition and range of pyroxenes for the different intrusions in the Concepcion del Oro area 168 Average composition and range of amphiboles from electron microprobe data for the different phases of the Concepcion del Oro intrusion, 173 Average composition of plagioclase/K-feldspars pairs used for geothermometric calculations after Stormer (1975), and range of resulting temperature estimates as a function of available pressure data from Al-in-homblende geobarometric calibrations (Schmidt, 1992) for phases of the different intrusive centers in the Concepcion del Oro area 202 Pressure estimates in kilobars from Al-in-hornblende geobarometer calibrations for the different intrusives in the Concepcion del Oro area, in parenthesis number of data points obtained 206 Average composition and range, halogen contents, oxygen and water fugacity estimates from biotites of the different intrusives of the Concepcion del Oro area, along with temperature and pressure estimates used for their calculation 209 Summary table of average temperature and pressure estimates (Stormer, 1975; Schmidt, 1992), derived oxygen and water fugacities (Wones and Eugster, 1965; as well as Wones et al., 1971; and Wones, 1981), and halogen contents in biopjriboles for different intrusive phases in the Concepcion del Oro area 223

18 ABSTRACT The Concepcion del Oro, Providencia, Noche Buena and Santa Rosa igneous centers are located in the central sector of the Sierra Madre Oriental, to the southwest from the city of Saltillo, in the state of Zacatecas, Mexico. Their associated mineral deposits constitute a coherent igneous and metallogenic area. It is characterized by a sequence of magmatic bodies intruding a predominantly carbonate sedimentary sequence of Mesozoic age. Field reconnaissance, whole rock major, trace and isotope geochemistry, and mineral chemistry define three magmatic pulses. The first pulse is characterized by a intermediate to mafic, relatively oxidized magma with low contents in halogens that becomes more contaminated with crustal material, enriched in fluorine relative to chlorine, and reduced as it evolves. The second pulse is at first more oxidized than the previous, but, like its later phases, it shows also significant crustal contamination and relatively high halogen contents. It becomes significantly more reduced, its overall halogen contents decreases and becomes strongly dominated by fluorine towards the late stages. A third magmatic pulse constituted by mafic, post-mineralic dikes was recognized but not analyzed. Common magma sources and a similar igneous evolution is documented for the different intrusions. Available field evidence, geochemical data and documented metal suites associated with the intrusives, indicate that mineralization is dominated by copper in the earlier phases, and lead-zinc-silver in the later phases. While the lead-zinc-silver mineralization has many parallels to other mineralized systems in the Sierra Madre Oriental, the significant copper mineralization is uncommon for the region.

19

Chapter I INTRODUCTION AND STATEMENT OF THE PROBLEM The present thesis seeks to study the petrography and petrology of several intrusive centers around the mineral district of Concepcion del Oro in the central section of the Sierra Madre Oriental with the purpose of documenting the relationship between magmatism, alteration and mineralization styles, establish a comparison between these centers and other areas within this section of the Sierra Madre Oriental, and finally view their evolution in the regional geologic and tectonic context. Due to time constraits for the completion of this dissertation, much of the new data on the hydrothermal systems in the region could not be incorporated. This work represents only a partial report on the broader study of mineralization, hydrothermal alteration and magmatism in the central sector of the Sierra Madre Oriental originally envisioned. The Concepcion del Oro district is located in the central section of the Sierra Madre Oriental of Mexico, 126 kilometers to the southwest from the city of Saltillo. In the general geologic literature it is one of the more extensively studied and better documented areas in northern Mexico. This is partially the result of the presence of the old mining district of Avalos, active since colonial times. Also its central location along the route between the cities of Zacatecas and Monterrey made it an attractive and easily accessible area for geologic inquiry. Its intermediate position between the Sierra Madre Occidental and Eastern Mexican magmatic provinces near the eastern limit between the Mexican Basin and Range and the Sierra Madre Oriental Foldbelt allows the study of magmatism related to the eastern and western margins of Mexico and its interaction with the

20

Mesozoic sedimentary sequences and complex structure of central Mexico. The districts around Concepcion del Oro have been one of the largest producers of copper, lead and zinc in Mexico for the better part of the 20"^ century, its deposits constituting classic examples for skam and high temperature carbonate-hosted mineralization styles. From a metallogenic point of view, the mixture of metal suites represented in the different deposits and their location relative to the overall tectonic structure makes it a rather unusual occurrence within the metallogenic map of Mexico. Also the overall igneous petrology of the associated plutons reveals elements more mafic than coeval igneous suites of its age in the Mexican Mesa Central region and more akin to mafic/alkalic suites in eastern Mexico. Finally, the variety of mineralization styles in the area, constitute a representative cross-section of mineralization styles in the region and illuminate the relationships between those and the magmatism in the region. In this introduction a brief bibliographic review and summary of the geology in the different intrusive centers is given, followed by a summary of the regional geotectonic setting and a detailed geologic framework of the study area.

21 Explanation r An/on Mcxico Cicologio Man

u PaJeozoi

'Monterrey

iTorreon.

J

jSaltillo

.Durango,

105°

104°

103°

102°

101°

100°

Figure 1; Synoptic regional geologic map of the central sector of the Sierra Madre Oriental with generalized geologic units and their temporal position. Extracted from Ortega Gutierrez (1992): Carta Geologica de la Repiiblica Mexicana, escala 1:2,000,000. Digital version by the University of Arizona - Industry U.S. Geological Survey Mexico Minerals Consortium.

22

1.1

Historical background

1.1.1 Concepcion del Oro and Providencia The district of Concepcion del Oro has been one of the largest copper producers in Mexico for the better part of the 20"^ century, being one of the classic examples of skarntype mineralization in this country. From a metallogenic point of view, the size and copper-rich nature of the mineralization of the district and its location far removed from the Pacific subduction front makes it a rather unusual occurrence within Mexico. Also the overall igneous petrology of the associated pluton is more mafic than coeval igneous suites of its age in the Mexican Mesa Central region and more akin to mafic/alkalic suites in eastern Mexico. In contrast, the Providencia district, a major producer of lead, zinc and silver in Mexico, seems associated with more felsic, porphyritic intrusions. From a metallogenic point of view, the mineralization's metal suite appears similar to other districts in the Mexican Plateau. The igneous petrology, however, being part of the same intrusion as Concepcion del Oro, sets it apart from other lead-zinc districts in Mexico. Also, relatively recent evaluation of the copper-rich portions of the district, further emphasizes the similarities with the Concepcion del Oro district. These two mining districts have been known and exploited since colonial times. After a long hiatus in mining activity as a result of mexican independence from Spain, the emerging district is featured in a number of geologic studies and fieldtrips presented during the 10th International Geologic Congress in 1906. Between the early 1940's and

23

the mid 1970's increasing interest in the Concepcion del Oro and Providencia districts is documented in numerous unpublished reports', a series of summaries of the district's geology and mineral deposits by Triplett (1952, 1956), the U.S. Geological Survey (Rogers et al., 1961, 1963), Buseck (1962), Sawkins (1963), the Mexican Consejo de Recursos Naturales No Renovables, today's CRM -Consejo de Recursos Minerales(Mapes Vazquez et al., 1964), Rye (1965), and mineralogical and metallogenic articles in Economic Geology (Krieger, 1940; Buseck, 1961, 1966; Sawkins, 1964, 1969; Ohmoto et al., 1966; Rye, 1966, 1974; Rye & O'Neil, 1968; Rye & Haffty 1969; Stollery et al. 1971; Roegge et al. 1974). Of these publications, the investigations on the Concepcion del Oro district by Buseck identify it as a contact metasomatic/skarn, copper mineralization. The majority of the latter works, however refer to the Providencia district. The microthermometric, geochemical and isotopic investigations on the Providencia district help establish the deposit model for the igneous-related, high temperature, carbonatehosted lead-zinc mineralization systems. These include information on the Concepcion del Oro district as well, generally as complementary or ancillary data. Both the Concepcion del Oro and Providencia districts are referred to in later articles of the 1980's and 1990's. These are generally summaries on specific aspects of mineral deposits (Haynes & Kesler, 1988; and to an extent Rye, 1993) or regional metallogenic summaries (Keith, 1981), however little new research has been generated on the districts since then.

' A detailed list of references by district is given in tabulated form in Appendix A.

2

1

0

2km

4km

6km

8km

10km

Figure 1.1.1: Overview geologic map of the Concepcion del Oro, Providencia and Santa Rosa igneous centers, delineated from Rogers et al. (1964).

25

1.1.2 Noche Buena (in the early 20"^ century also known as the Potrero district) The district of Noche Buena has remained for the most part unknown. It was identified as an analogue to the nearby Providencia for its similar chimney-manto style lead-zinc replacements. As such, the differing geologic characteristics were not taken into account. From a metallogenic point of view, the metal suite parallels that of the Providencia district, including recently evaluated copper-rich occurrences not recognized in earlier work. However petrographically the district exhibits both characteristics of mafic/alkalic and more felsic, porphyritic rocks. Despite the fact that this district was an operating mining camp for a good part of the early

century, with extensive underground workings, the information on it is very

scarce. It is mentioned indirectly in unpublished company reports by Wisser (1932, 1943, 1944) and the Consejo de Recursos Minerales. In the scientific literature, references to this district are scattered through reports or review articles dealing mostly with the Providencia district. The only reference dealing specifically with it is Puchner & Holland (1966), indirectly however it is also mentioned in De Csema (1956), Rogers et al. (1956, 1961, 1963) and in Roegge et al. (1974).

ESCALA 1:50000

kik>metro

. T ••

I •mtusn* 1 CMW'O I MTftVHVAIHItUKM* I IH9IIIT*

(CHuoosQf te'iiM'

|mi»o rUMBICAKIW ; hKir* t IITOUSIVtmTEtMCOlA

(cMOKoe io'lio'

C:? HDMNrmi tCtKAl

' (iilH«nrt Wtc* WSAL'O tOM MCCW VOICAMCI

I Lt)Tn«

I

- COftTiC'O

I tKINJCA I MiDlSCA'ClrMSlOWCtAM I CONSLMKMM J aUfCM*

I

lOCAl

- —- ittirt* LWUSK COHOtCCWI tMU M (OCRGII

Tcnnaciiht cn?wo rittiro TCMWCIMl tltaNSi1«([Ll {•• Ifuro OES(CW ' MfCMS • •• vrnioM (reoesiNcinuL

_Q_ CUUCIH MMWOL niMHW iSQtnsio cncB

ICIOKEItm

•f

-fv-

E>CO( SmCLMOl rf fluuwew. nuAK•SiUMMMe

^—m-Ar CMItt'tM D« ttPO'» W-.-. r:***l»t«*tSU'*l \y ^ VI«S(NC*.l* (fSlACiOli • w II YxDone .1. 0»«*S »MS IU.IMCCHUWNTOS r«»«

m

A

<0«l0uc!0 SUtlEKRAMi C«ITMH{$ (D)(>ci0 MkinR DE » n KUIMAS CtMfKTIBlO l&ieSM

»

BOSfltil



^ LMNTti ^ CiUTAi VCNifClDO

CSCUELA , CEKM MtPAS OiVKIOKt^ (TC FADO

Figure 1.1.2: Overview geologic map of the Noche Buena intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-62 Concepcion del Oro.

27

1.1.3 Santa Rosa The district of Santa Rosa is virtually unknown. Relative small amounts of polymetallic copper-lead-zinc-silver ores were mined along veins, contact zones and replacements adjacent to the contact between a porphyritic dacite plug that has been compared with a resurgent dome, and mostly upper Jurassic and lower Cretaceous limestones. From a metallogenic point of view, its polymetallic Cu-Pb-Zn ± Ag, Au suite is not unlike other mineralized centers within the Mexican Mesa Central. This district operated from around the turn of the last century until around 1930 (Wisser, 1932) and had early reviews by Burckhardt (1906) and Barrera (1927). Indirectly it is also mentioned in Rogers et al. (1956, 1961) in addition to Wisser (1932, 1943). Since then, however, all references to the district disappear from the geologic literature.

28

1.1.4 Other localities 1.1.4.1

San Feliciano

The only references known to date about this area are citations in Rogers et al. (1956, 1961) and a hydrogeologic investigation by the Consejo de Recursos Minerales, in which basic geologic work was also carried out (Garcia Calderon, 1976). No major mining activity is known for this area and only small-scale work devoted to the extraction of hematite for pigment on fracture-hosted or high level hematitic carbonate chimney ores near the limestone contact, and distal gold veins to the east ,at Los Gemelos, are reported. Nevertheless exploratory geochemistry and drilling was conducted at this site (Martinez Rodriguez, 1979).

Figure 1.1.4: Index geologic map of the Concepcion del Oro area with locations of other studied, assembled from CETENAL Carta Geologica de la Republica Mexicana, escala 1:250,000; hojas G-13 12, Juan Aldama, and G-14 10, Concepcion del Oro. ^

30

J MlftCURlO

AjAQA

Cj-lu .

lictn(h>

OURAZNiLLO OR 6"

ESCALA 1:50000

|i

: wo*."* i ar«irtn>*i«rc*HfOu ; aMlK«T<

to

I cir«ut
OCHOOUWltAt

luritk^MSU MaaSC*t**M CMU MC two U(CM

—a— + _Q_

FCiHcmacs CUK>D)*MV«fMf*a< rtMMEKU TUHSlTiaiC (( itfUlM . riMUCUUtKMScltKi (» MXUS • MttHU AMBU . cu»c
CMOUCTO ew.Twu.Es

luooBir «1IUS VMS llMKtfUWCRTOS

r-t fAlUmERU — rMcruu —I otQur

^

»o«eo

LItRES +

CC»CU BMOU OiVlSlOWStIC

^ f$IiI»L*CBlHC«C(l isiiiiimo

Figure 1.1.4.1: Overview geologic map of the San Feliciano intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C72 Tanquecillos.

31

1.1.4.2

Cerro Pedregoso, Coahuila

The only references known to date about this area are Rogers et al. (1961, 1963). The Consejo de Recursos Minerales however has conducted limited geologic reconnedssance and geochemistry (Martinez Vacio, 1973; Martinez Ramos, 1986; and Lee Moreno & Ramos D., unknown date). No major mining activity is known immediately at this location and only small-scale work on fracture-controlled, as well more spatially extensive alteration zones, at the El Garabatillo and Canada La Pastora workings are mined for vermiculite according to the Consejo de Recursos Minerales,. However, to the southwest of the intrusion the Clavellinas mine is documented in Rogers (1961). hi the El Garabatillo and Canada La Pastora workings, presence of disseminated sulfides and oxidized copper stains on fractures lend some credence to local indication of copper and gold beneficiation by artisanal methods. More recently the area has attracted some interest from two junior Canadian mining companies Canarc Resources Corporation, through its Mexican subsidiary Aztec Silver Corporation, and Far West Mining Limited which are conducting grassroots exploration in the district^.

^ This information has been obtained from the website of IMDEX, Inc. - Minera Cascabel S.A. de C.V. at http://www.imdex.com/.

ESCALA 1:50 000

aTRMTUiaS

lOCUtCMAS

a

+

&*W)0

• l(«

;»iPLtiA 1 f ItlUSiM MIlRHfDi'

lt

:e>TltU3IVClk

r

lt>

h

ECKADCSUi iP"AV(

h

CCKAOCSf'E W"« »'

; row

; glECHIVOLCANICA

- MMITCMrMHimAOt TeUMCEtl* TI/MSlKllf fl ritUK

D(S[CAS i^acoK - c*»{TC*trtD(eki.

-fv-

CAMETEMfSUUl

MUStK COHOUCCUM

ONDUCro CIlTMliU

WTMieVlUS



_Q_

[JiOf SI'lCllNAl

lllMCCPIUKHTaS

.gl—- - »0 — o(nKiino(u:> lams _«T(RIUCIOUI i- liuiikt HRirooo

Figure 1.1.4.2: Overview geologic in^'Off the CerrOfpedregoso intrusion, from CETENAL Carta Geologica de la Repiiblica Mexicana, escala 1:50,000, hoja G-14 C-64 El Salvador.

33

1.1.4.3

El Saltillito, Zacatecas

The references known to date about this area are an indirect citation in Triplett (1952) and the regional geologic report of Rogers et al. (1961). The Triplett (1952) citation corresponds to two mine sjmibols plotted on a regional sketch 1:1,000,000 scale of mining camps between Providencia, Concepcion del Oro and Monterrey: the Saltillito and Laureles mines. The Rogers et al. (1961) report describes the geology of the area very succintly but includes a relatively detailed petrographic description of one sample of intrusive. Major mining activity probably occurred in the early part of the last century, as attested by abandoned mine workings at the above mentioned localities. The Saltillito mine extracted carbonate- or calc-silicate-hosted copper ore, whereas it is unclear what type of ores the Laureles mine beneficiated. Evidence from fieldwork suggests copperbearing or pyritic gold ores in strongly altered porphyritic igneous matrix was the ore, to judge from tailings.

L^MSCDISSANCaEZ. /. (SANTj^m^ .—

ESCALA 1:50000

H • l«Tft«&lV* KIO* • CUMTe IMTKUSW* wifmicMit

h

I nT«IAfir« S*SICA

fCMAplKN KTAM

(it«us
exiitu»n>A lAsio Alto

to

tCMwn ix ftCk Mr

• MDCXM « *1>HS0I cc /-•

-fV-

CAaMTCa* 0( MM M OM ( s- CMHtnCM rMUMNTAM rftMtCauTMMITiktK {< fteSKM MKHM MKCUI a«tto»i «tM«u .WW-tc CMWcrf M ei cwKrrw CNrvtufS eoo* ftf ^•

jQ_ ftUMA (MMSfO enris

c(M«ii(ao «iesK sc»«siroM *cu> LINTCS

CKil ASLlOi ' (CKMtMDAS 0>vtS>0N!: I

Figure 1.1.4.3: Overview geologic map of El Saltillito intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-74 El Salado.

35

1.1.4.4

Matehuapil and El Rabioso, Zacatecas

The appear to be no references known about the Matehuapil intrusion, also known as Cerro Palacio, to date other than an indirect citation in Triplett (1952), the general geologic report of Rogers et al. (1961) and two unpublished reports on general geologic and geochemical reconnaissance by the Mexican Consejo de Recursos Minerales (Martinez Vacio, 1973; and Martinez Ramos, 1988). The citation in Triplett (1952) corresponds to three mine symbols appearing in the regional sketch 1:1,000,000 scale of mining camps: Sultana, San Francisco and Boleta. Some mining activity might have occurred in the early part of the 20''' century only at Sultana, where copper ores in a barite-carbonate gangue have been described by Rogers et al. (1961), but has since ceased. Similarly, little is known about the nearby El Rabioso area, other than unpublished reports by the Consejo de Recursos Minerales (Martinez Vacio, 1973; and Hernandez Perez, 1977). It has been often associated with the Matehuapil occurrence, and some geologic information about the area is included in bibliographic references of that district. No major mining activity is known for this area other than perhaps some minor artisanal workings.

fouoa

U9M10

rtUMUfO TtU'OW

>SaKKL« lUtKlOM^ lOMLC

ESCALA 1:50000

Figure 1.1.4.4: Overview geologic map of the Matehuapil and El Rabioso intrusions, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hojas G-14 C-63, Presa de San Pedro, and G-14 C-64, El Salvador.

37

1.1.4.5

Rocamontes (Guadalupe Garceron), Coahuila

The only references known to date about this area are in Rogers et al. (1961, 1963) and possibly in Triplett (1952). The Consejo de Recursos Minerales, however, has conducted relatively extensive geologic reconnaissance, geochemistry, geophysics and exploratory drilling (Martinez Vacio, 1973; Arriaga Melendez, 1977; Hernandez Perez, 1977; Martinez Rodriguez, 1979; Martinez Ramos et al., 1986; and Martinez Ramos, and Rivera Martinez, 1992). Some minor mining activity might have occurred in the early part of the 20"' century, which corresponds to the indirect citation in Triplett (1952) of an unnamed mine symbol at the north end of the Rocamontes anticline (La Guadalupana workings). Otherwise no major mining activity is known for this area and only smallscale artisanal work on mineralized fractures, quartz-sulfide veins and contact zones with the limestone host rock are reported in unpublished reports by the CRM.

ESCALA 1:50000

Figure 1.1.4.5: Overview geologic map of the Rocamontes intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-63, Presa de San Pedro.

39

1.1.4.6

Melchor Ocampo (San Francisco de Ocampo), Zacatecas

The district of Melchor Ocampo was known early in the century for its copper-gold mineralization. It is presently mined at a small scale for lead, zinc and silver. Overall, however, it has remained for the most part unknown. It shares many traits with the nearby Concepcion del Oro and Providencia districts for both its copper skarn and chimneymanto style lead-zinc replacements. From a metallogenic point of view, the metal suite parallels that of the Concepcion del Oro district, and petrographically the district exhibits both characteristics of mafic and more felsic, porphyritic rocks. This district was an operating mining camp in the early 20"^ century and might have been known in colonial times. However information about it is scattered through geologic articles and reports. Indirect reference appears in Imlay (1938), Wisser (1932, 1944) and the general geologic reconnaissance work of Rogers et al. (1961). Particularly in the first work, three different mine workings are described: Naranjera, San Francisco and El Cajon. It appears as only one mineral occurrence in the regional sketch 1:1,000,000 scale of mining camps in Triplett (1952); Naranjera. The mexican Consejo de Recursos Minerales has conducted specific work on mineral occurrences within the district during the 1980's but the resulting reports have remedned unpublished. After that it disappears from the geologic literature, despite the fact that mining has continued intermittently to the present day: the Naranjera mine, which apparently is under care and maintenance by the local operator Minera Tayahua S.A. de C.V. (Ing. Felix Espinosa, 1997, pers. comm.), and small-scale artisanal mining at La Azul and Cabo Terrez workings on mineralized

40

calc-silicate- and carbonate-hosted sulfide zones, and distal silver- and possibly goldbearing fractures and veins respectively.

ESCALA 1:50 000

2

3

^

3

tocu

rf FAUANORUAL

METUtORFKilS CUARClTA

MTRUSfVAAClOA GRAHITO

ECKAOOS DC 0" A '.O*

(MOaiTA

ECHAOOS OE 10- A 30'

WTRMIVA «ASICA MUO CXTRUSlVAAClOA mOLITA EXTRUSWA (HTERttCDtA ANOCStTA aTffUStVA BASfCA MSAirO TOBA

• MASMOi

r f FAi.LA INVERSA

PUAROA

MSrOUSIVA MTCMeOIA

FRACTURA

CSOUlSTO

DIQUC

CNEIS

h h4-

VET*

ECHAOOS OE 30' A W BfSlOUAl AlUVlAL lACUSrit{

ECHAOOS Oe 80-A 90-

tfteCHA VOICANICA VITHEA

P

M Cr?

VOLCAft

OOLIM

PIAWOHTE PALJSTRE

LITORAt EOltCO

HANANIIAL FRIO

GIACIAL MANAHTtAt. TERUAL PUHTODE VEBJftCACtOH

CALiZA

CATA

CALIZA-LUTITA BANCO 06 UATCRtAL

HAKCA

LUTfIA LUTfTA'AREWSCA

CONTACtOINftRlOO -ft-

ARCNBCA ARCNSCA-CONCIOMERAOO CONGLOMERAOO MCCHA

EiC OESINCllNAL

reso TRAVERTINO

TlllTA

XL

EIE OE SiKLINAL RECUMBENtE

CAWNOST FEMOCMIIILES

> CARDETERA OE HAS OE DOS CARRILES CARRETCRA PAVIMENTADA TEMACCRtA TRANSITABLE EN TOOO • TltMPO TERRACERUTRAMSITABlE EN TIEMPO ~ DESECAS - 8RECHAS VEREOAS

AUOPUERTOS tMTfRNACiONAL

PAVIMENTAOA LOCAL -r--rr AESOPlSTA

TIERRA

LMEASK CONOUCCKM

- LtNEASOEENERClACLECIRiCA riLEGRAfO

Figure 1.1.4.6: Overview geologic map of the Melchor Ocampo intrusion, from CETENAL Carta Geologica de la Republica Mexicana, escala 1:50,000, hoja G-14 C-62, Melchor Ocampo.

42

1.1.4.7

San Rafael, Zacatecas

The only references known to date about this area correspond to Rogers et al. (1961, 1963), where he describes the intrusive jointly with the Pico de Teyra intrusion and a nearby albitite body; and an indirect citation in Tardy (1980). The Consejo de Recursos Minerales included this area in a regional exploration and evaluation of northern Zacatecas in the 1960's and produced a few internal reports (Arriaga Melendez, 1973; Arriaga Melendez, 1977; de la Fuente Garcia, 1979), which have remained unpublished. No major mining activity is known for this area and it is unclear that even small scale work takes place despite the report of gold-bearing quartz veins (Tardy, 1980), fractures with iron and copper oxides and gossans (reported by the mexican Consejo de Recursos Minerales). In particular, Arriaga Melendez (1977) indicates thirty seven mine workings, a few known with name: San Francisco, San Jose, Mina de La Masa, Leandra, El Maguey and Ave Maria.

43

1.1.4.8

Pico de Teyra, Zacatecas

The only references known about this area are in Rogers et al. (1961, 1963), Cordoba (1964), and its citation in Tardy et al. (1974, 1975), Tardy (1974, 1980). In addition the Mexican Consejo de Recursos Minerales has conducted general geologic and geochemical exploration work in the area as part of the exploration and evaluation program for northern Zacatecas (Arriaga Melendez, 1973; 1977). No major mining activity has taken place in the area.

44

1.1.4.9

Cerro Prieto, Durango

The district of Cerro Prieto is almost unknown. It was mined for copper, silver and gold early in the 20'^ century. Mineralization was likely of vein or skarn type. From a metallogenic point of view, the metal suite is similar to that of the Concepcion del Oro district, however there might be no identifiable analogue to this district in the near region. Petrographically the district exhibits characteristics of the mafic/alkalic systems in eastern Mexico. The only references known to date about this area area series of unpublished reports by the Consejo de Recursos Minerales and a summary published at the AIMMGM mining convention in Acapulco (Saenz Reyes, 1995), the accompanying description to the 1:100,00 scale geologic map corresponding to the area (Anderson et al., 1988), and an earlier master's thesis from Louisiana State University (Lee, 1963). As with the Matehuapil area, the CRM opened up this area for exploration in 1997 under the project names "Cerro Prieto-Constitucion" and "Cerro Prieto-El Orito" but these were apparently not awarded (http://www.mexmin.com/mingov97.asp). The only major mine operation in the area appears to have been the underground workings at Veta Constitucion, which corresponds to the earlier name of Mina San Miguel, however a number of other unnamed prospects exist in the area including El Chivo, Comadreja, Rosikler, Don Daniel, Don Lui's, Acuario, and further to the south La Palma, La Palma Uno and EI Orito. No major mining activity is otherwise known for this area.

45

1.2

Regional geologic setting Northeastern Mexico consists of variably extended Proterozoic basement terranes and

a collage of Late Paleozoic and Mesozoic accretted terranes overlain by a thick miogeoclinal succession of Mesozoic age into which late Mesozoic and Cenozoic magmas are intruded (Campa & Coney, 1983; Silberling et al., 1992, Sedlock et al., 1993). A complex, incompletely understood Phanerozoic structural history begins with the late Paleozoic Ouachita orogeny during which Gondwanan crust was thrust over a North American passive margin. The resulting continental margin experienced the addition of at least one and possibly two volcanic arcs: the Las Delicias arc in the area between the Parras Basin and the San Marcos area, in Coahuila (Jones et al., 1995; McKee et al. 1988, 1990, 1999); and an unnamed arc identified with a pre- upper Jurassic volcaniclastic sequence in the Sierra de San Julian, south of the Parras Basin, in northern Zacatecas (Anderson et al., 1990; Bartolini, 1998). The composite Paleozoic-early Mesozoic margin was rifted during the opening of the modem Gulf of Mexico, beginning in the Jurassic (Dickinson & Lawton, 2001), becoming a back-arc basin over which a miogeoclinal sequence was deposited during the later Mesozoic. This sedimentary sequence becomes restricted to the Parras Basin in the upper Cretaceous as uplift, related to the accretion of the Guerrero terrane, proceeds to the south and west resulting in an influx of terrigenous sediments (Tardy, 1980, Goldhammer, 1999). Magmatic activity is evidenced not only in the sediments derived from the distant magmatic arc of the Guerrero terrane (Tardy, 1980) but also by the intrusion of mafic plutons. Final closure of

46

the Parras Basin and uplift in the early Tertiary is accompanied by deposition of a continental sequence and widespread magmatism related to the Sierra Madre Occidental (Aguirre-Diaz & McDowell, 1991; Murillo Muneton & Torres Vargas, 1987; Ohmoto et al., 1966; Buseck, 1962 within the region near the study area; Henry et al., 1991; AguirreDiaz, 1988; Henry and Price, 1986; Gunderson et al., 1986; Cameron and Cameron, 1985; Huspeni et al. 1984; Ruiz, 1983; Keller et al., 1982; Chuchla, 1981; Gregory, 1981; Cameron et al., 1980; Cameron and Hanson, 1978; among others for northern Mexico overall). Magmatic activity in NE Mexico spans the late Paleozoic batholithic rocks of La Mula Island, Coahuila (Jones et al., 1984; Lopez, 1997), and Tamaulipas (Lopez Ramos, 1972; Jacobo-Albarran, 1986; Murillo Muneton & Torres Vargas, 1987), as well as the intrusive and volcanic rocks of Las Delicias arc (McKee et al., 1988; Lopez et al., 1996; Lopez, 1997); and the unnamed Jurassic volcanic arc in the Sierra de San Julian (Jones et al., 1995, 1990; Wilson, 1990); followed by late Cretaceous intrusions and mid- to late Tertiary intrusive and volcanic rocks. Igneous activity during the Permian appears to result from the interaction of the North American craton, the Coahuila and Maya terranes in an active subduction setting with subduction verging eastward under Pangea (Torres et al., 1993, 1999). The result of this active tectonic phase is a series of intrusions emplaced along the western margins of both the Coahuila and Maya terranes (Torres Vargas, 1995; Torres et al. 1999). Jones et al. (1995) and McKee et al. (1988, 1999) consider the Las Delicias arc to have developed on

47

continental crust of Grenvillian age but nevertheless of exotic origin. They consider this terrane to have been transported along a large sinistral strike-slip structure, identified with the San Marcos fault (McKee et al., 1979; 1988, 1990), and emplaced at the southern margin of Coahuila in the Triassic. An early Mesozoic period of rifting and progressive subsidence from southwest to northeast in eastern Mexico (Rueda Gaxiola et al. 1991, 1993, 1997) is generally viewed as the onset of passive margin conditions with fme-grained sediments being shed from a continental land mass located to the east (Centeno, 1994). To the west, in the Sierra de San Julian, the pre-Upper Jurassic age Rodeo-Nazas volcaniclastic sequence (DeCserna, 1956; Cordoba, 1964; Blickwede, 1981) may constitute a volcanic arc fragment of unknown basement accreted onto northeastern Mexico in mid- to late Jurassic times (Anderson et al., 1990; Jones et al., 1995; Bartolini, 1998). Continued tectonic quiescence led to the deposition of shallow marine to pelagic carbonate sequences, interrupted by several regional unconformities (Longoria, 1990). With the emplacement of the Jurassic-Cretaceous Zihuatanejo-Huetamo magmatic arcs and final accretion of the Guerrrero Terrane in the upper Cretaceous (Centeno et al., 1993; Centeno, 1994), a long period of magmatic quiescence in north-central and northeastern Mexico comes to an end. Tectonic uplift to the south and west accompanied by magmatism that appears to be synchronous leads to the development of large tectonic nappes (Tardy, 1980; Tardy et al., 1975). This is followed by deposition of continental deposits, which have a variety of local names: Ahuichila Conglomerates, Mazapil

48

Conglomerates; and only rarely can be assigned a reliable age. However observation of intercalated volcanics indicate them to be roughly contemporaneous with Tertiary magmatism as early as Paleocene, but from lithological evidence more likely Oligocene in age, and crosscut or overlain by Miocene or younger basalts.

49

1.3

Magmatism in the central sector of the Sierra Madre Oriental: petrography, alteration and mineralization Igneous activity in the Sierra Madre Occidental of Chihuahua and adjoining northern

Sierra Madre Oriental has been described by different authors (McDowell & Keizer, 1977; Swanson et al., 1978; Clark et al., 1979, 1982; McDowell, 1977; Gregory, 1981; Mauger, 1981, 1983; Henry and Price, 1984, 1986; McDowell et al., 1990; Henry et al., 1991; among others) as an extensive period of magmatism that begins in the Paleocene with the deposition of predominantly andesitic volcanics with an approximately thickness of 1000m, overlain by a similarly thick sequence of rhyolites and ash-flow tuffs in the Oligocene in what, to the west has been termed the "ignimbrite flare-up" (McDowell et al., 1990). Aguirre-Diaz and McDowell (1991) report for the Nazas area in Durango three magmatic pulses: an Eocene event, between 51 Ma and 40 Ma; an Oligocene event, around 30 Ma; and a Miocene event, between 24 Ma and 20 Ma. The early magmatic pulse is characterized by felsic ash flow tuffs, intermediate lava flows and domes, while the intermediate pulse corresponds to a voluminous series of felsic ash flow tuffs, and the late pulse comprises alkalic basalt flows. Igneous rocks in the Mexican Plateau and adjacent Transversal Ranges of the Sierra Madre Oriental, on the other hand, show at least two and possibly three compositionally distinct suites or discrete magmatic pulses taking place prior to the Miocene: an Upper Cretaceous event, between 100 Ma and 70 Ma; a Paleocene to Eocene event, between 65 Ma and 40 Ma; and an Oligocene event, between 40 Ma and 27 Ma. The earliest

50

magmatic pulse corresponds to mafic to alkalic intrusions, while the intermediate pulse is characterized by intermediate intrusions and intermediate to felsic extrusive rocks, and the late pulse comprises felsic extrusive rocks, some intermediate plutons and rare basalt flows. Localities and age dates for this region are summarized in Table 1.3. We believe based on field work that, despite the paucity of radiometric data, in addition to the Paleocene and Oligocene magmatic pulses, which have been documented for other areas in northern Mexico, the upper Cretaceous igneous age dates are significant and correspond to an earlier magmatic pulse. It can be distinguished from the Tertiary events based on geochemistry, alteration and mineralization styles.

Table 1.3: Age date compilation for intrusive centers in the Mexican Plateau and adjacent central sector of the Sierra Madre Oriental. Locality Nazas, DGO

Sierra de Jimulco, COA Ochoa, DGO PedricenasVelardeiia, DGO

Magmatic pulse Cretaceous 87.5 Ma (diorite)

107 Ma (rhyolite) 103 Ma (diabase)

Citation Paleocene-Eocene 48.8 Ma (andesite) 45.2 Ma (trachyte) 42.9 Ma (tuff) 40.3 Ma (andesite) 64 Ma (diorite) 57 Ma (rhyolite)

Oligocene 34.0 Ma (rhyolite) 29.9 Ma (tuff) 29.5 Ma (tuff) 32 Ma (basalt) 31 Ma (rhyolite)

40.9 Ma (andesite) 45 Ma (andesite) 33.4 Ma (rhyolite) 33.1 Ma (qtz-latite)

Cerro Pichagiiilla, DGO Parrilla, DGO San Rafael, ZAC

70 Ma (andesite, Pb-a) 87.4 Ma (qtz-diorite) 80 Ma (syenite, Pb-a)

Sombrerete, ZAC San Martm, ZAC

30.2 - 24.6 Ma (rhyolite) 46.2 Ma (qtzmonzonite)

Dating method is generally, KAr, unless otherwise indicated.

Aguirre-Diaz & McDowell (1991)

Murillo Muneton & Torres Vargas (1987) Huspeni et al. (1984) Aguirre-Diaz & McDowell (1991) McDowell unpub. data, in Gilmer et al. (1988); Gilmer et al. (1988) Pantoja Alor & Rincon-Orta (1967) Damon (1978), Clark et al. (1978) Pantoja Alor & Rincon-Orta (1967) Huspeni et al. (1984) Damon et al. (1983)

Table 1.3 (continued). Locality Fresnillo-Plateros, ZAC

Magmatic pulse Cretaceous 75.7 Ma (qtzmonzonite)

Providencia, ZAC Concepcion del Oro, ZAC Rocamontes, COA 8 0 - 7 1 M a (syenite) Cerro Pedregoso, COA Real de Catorce, SLP Santa Maria de la Paz, SLP Charcas, SLP Guadalcazar, SLP Las Cuevas, SLP

75 Ma (syenite)

Citation Paleocene-Eocene

Oligocene 38.4 Ma (felsic Clark et al., (1981); ignimbrite); Lang et al. (1988) 33.5 Ma (qtz-trachyte) 32.2 Ma (granodiorite); 32.4-31.6 Ma (qtzmonzonite); 29.1 - 27.4 Ma (qtztrachyte, rhyolite) Ohmoto et al. (1966) 40 Ma (granodiorite) 34.5 Ma (sericite) 40 Ma (granodiorite) 37.5 Ma (adularia Buseck (1962, 1966) vein) Murillo Muneton & Torres Vargas (1987) Murillo Muneton & Torres Vargas (1987) Murillo Muneton & Torres Vargas 53 Ma (qtz-latite porphyry) (1987) 36 Ma (granodiorite Murillo Muneton & Torres Vargas porphyry) (1987) 43 Ma (granodiorite) Murillo Muneton & Torres Vargas (1987) 28 Ma (granite, Rb/Sr Tuta (1980) isochron) 32.7 Ma (rhyolite, Ruiz et al. (1980) Rb/Sr isochron)

Dating method is generally, KAr, unless otherwise indicated.

to

1.3.1 Magmatism Igneous intrusions belonging to the upper Cretaceous early event are, from east to west, the Cerro Pedregoso pluton; the Matehuapil stock; the Rocamontes intrusion, also known as the Guadalupe Garceron pluton; the eastern part of the Noche Buena intrusion; the Nuevo Rodeo and San Rafael stocks; a group of small outcrops at the northern end of the Sierra de Peribanez; and finally the Cerro Prieto intrusion. Other intrusives that may fall in this category are the El Saltillito intrusive outcrops, the San Feliciano stock and the Melchor Ocampo pluton. They form composite calc-alkaline to alkaline, metaluminous plutons with compositions going from quartz-monzonites, monzonites and monzodiorites to syenites. They have geochemical signatures akin to Volcanic Arc Granitoids (Pearce et al., 1984; Harris et al., 1986) with some borderline cases between the fields of Volcanic Arc and Within Plate Granitoids (Pearce et al., 1984) and between Late and Post-collisional Granites and Within Plate Granitoids (Harris et al., 1986). Both composition, trace element and isotopic signatures suggest these could result from magmas with a significant mantle component. The Oligocene intermediate magmatic pulse includes, from east to west, the El Rabioso intrusive outcrop, to the north of the Matehuapil stock; the Concepcion del Oro, Parroquias, Providencia, and western part of the Noche Buena intrusions; and the Pico de Teyra pluton. Also the El Saltillito, San Feliciano and Melchor Ocampo plutons could belong to this group. The main centers in this later phase appear to be much more narrowly circumscribed to the central and eastern sector of the northern Mexican Central

Plateau and Transversal Ranges of the Sierra Madre Oriental. Magmatic centers of this later phase build composite calc-alkaline, metaluminous to peraluminous plutons and associated

porphyries

with

compositions

ranging

from

quartz-monzonites

to

granodiorites, and dacite to latite porphyries. Porphyritic phases are present at several of the previously mentioned plutons. In addition, a few may be related to major intrusions, even though there is no evidence at the level of outcrop/sub-crop: the old mining area of Santa Rosa, the central Sierra de Santa Rosa, and the Penasquito intrusive breccia. Also the Caopas and Pico Europa igneous outcrops, to the west in the Sierra de San Julian, could belong to this group. An extension of this later phase might include late volcanic necks and flows. These associated bodies are often porphyritic in nature. Late volcanic necks and flows are associated to the axial trace of the Sierra de la Caja: in the area between the San Marcos and San Eligio mines on the south flank, and the area around El Veintidos on the north flank of the Providencia intrusion, at Cerro de la Milanesa and nearby plugs on the crest of the sierra, and the area of Cuatro Palmas, south of Noche Buena. Overall they have Volcanic Arc Granitoid geochemical signatures (Pearce et al., 1984; Harris et al., 1986) near the boundary to both Within Plate Granitoid and Syncollisional Granitoids and numerous phases falling into those fields, but mainly into the Within Plate Granitoid and Late to Post-collisional Granite fields. These are thought represent more contaminated and/or evolved magmas related to Mid-Tertiary extension. To the west; however, early to mid-Tertiary magmatism becomes more difficult to distinguish from the more voluminous mid- and late Tertiary subduction-related volcanics of the Sierra Madre Occidental province, as Aguirre-Diaz and McDowell (1991) report.

55

1.3.2 Alteration Early mafic/alkalic intrusions display characteristic sodic-calcic to sodic alteration, characterized by varying degrees of bleaching of plagioclase in the igneous rock believed to be albitization, both associated with veins and with broader, more diffuse areas. Asssociated with this tj^e of alteration are also pyroxene-gamet-albite-sulfide veins with albite ± epidote haloes, or simple garnet veins with a narrowly bleached haloes; the earlier observed at Cerro Pedregoso (thin veinlets at the El Garabatillo mine) and at Cerro Prieto (in the Constitucion vein), the latter observed at Cerro Pedregoso and at Noche Buena. Intense, apparently fault-controlled, biotite alteration occurs locally, in some cases associated with albitization. This type of alteration is most conspicuous in the Cerro Prieto and Cerro Pedregoso intrusions. At other locations, the northern end of the Rocamontes intrusion and at the San Rafael stock, biotite alteration is disseminated in the intrusive rock. In a few of the early mafic/alkalic intrusions, reaction with the limestone host rock has resulted in formation of homfels dominated by garnet-epidote ± chlorite. Very often, however, only recrystallization near the contact of the intrusive has been observed. Similarly, at the contact with shales or phyllites, spotted phyllites occur. In Cordoba (1964), the contact between the Pico de Teyra intrusion and phyllites of the Taray formation is characterized as a fine-grained andalusite-albite-sericite phyllite, although the characterization of the andalusite porphyroblasts mineral was given as uncertain. Homfels has been observed in outcrops at the upper portions of the Rocamontes intrusion, at the north flank of the Noche Buena pluton, at the San Rafael

stock, and has been documented at Nuevo Rodeo by Tardy (1980), while examples of the contact metamorphosed phyllite have been observed at the Rocamontes intrusion, and at the San Rafael stock. More or less intense hydrolytic sericite-chlorite alteration has been observed at Cerro Pedregoso, Rocamontes, San Feliciano, Noche Buena, San Rafael and Cerro Prieto. Later intermediate intrusions show weak and local sodic-calcic alteration characterized by actinolite or actinolite-albite ± magnetite; followed by spatially restricted, moderately strong, disseminated biotite alteration; and widespread hydrolitic alteration either as disseminated, weak sericite-chlorite to moderately strong sericitechlorite ± tourmaline, or as structurally controlled, strong sericite-quartz-tourmaline ± sulfide assemblages in breccia veins and pipes. While disseminated hydrolj'tic alteration is widespread in many intrusive centers, significant outcrops of sericite-quartz-tourmaline ± sulfide breccias have been only observed at the Concepcion del Oro, Providencia and Noche Buena intrusions. Specific areas of strong sericite-clay ± sulfide, clay-sulfate ± sulfide alteration with associated silica addition, clay-sulfate alteration and sulfate veins have been recognized in connection with porphjritic phases in several intrusive areas: El Saltillito in the Laureles mine area; Providencia in the Salaverna and Gloria Estela areas; Melchor Ocampo in the Cerro de La Cruz area; the Penasquito intrusive breccia; and Noche Buena in the Aurora-Amarillas area. It is also suspected in the Concepcion del Oro district, in the area of Tajo de Azules. Further to the west, the igneous outcrops by El Rodeo and Pico Europa also show significant sericitic alteration. Alteration at or near the

contact with the host rocks around this group of intrusions is also significant with the development of calc-silicate assemblages on limestones and shales grading into extensive recrystallization aureoles. Tables 1.3.3-1 through 7 summarize igneous lithologies, isotopic age (where known) and associated alteration types.

1.3.3 Mineralization Mineralization styles related to the early mafic/alkalic intrusions can be classified as disseminated Fe-Cu ± Au related to biotite alteration zones and veins: Cerro Pedregoso, Rocamontes, San Feliciano, and Cerro Prieto; Fe-Cu ± Au sulfide veins related to pyroxene or pyroxene-gamet-albite or quartz-sericite veins: Rocamontes, San Rafael (as quoted in Tardy, 1980) and Cerro Prieto (as quoted in Saenz Reyes, 1995); and hematitecarbonate replacements distal to contact zones with a limestone host rock: San Feliciano. Cu-Fe ± Au skarns have been documented in connection with early mafic/alkalic intrusions at Matehuapil and Rocamontes; but also at the El Saltillito, El Rabioso and Melchor Ocampo, which could belong in this group. Later intermediate intrusions are connected to a variety of deposit types: base metal skams, carbonate replacements and associated veins, disseminated porphyry copper-style occurrences, precious metal veins, base and precious metal breccia pipes and epithermal systems, and secondary enrichment base and precious metal deposits. Cu-Fe ± Au and Zn-Pb-Ag ± Cu skarns with subordinate distal base-metal veins related to the contact zone between these intrusions and both carbonate and shale host rocks: Concepcion del Oro (Cu-Fe and Zn-Pb-Ag), Providencia (Cu-Fe and Zn-Pb-Ag) , as well as El Saltillito (Cu-Fe only, at El Saltillito mine). El Rabioso (Cu-Fe only, unnamed prospect) and Melchor Ocampo Oro (Cu-Fe only, at El Cochino mine). Massive oxide Fe ± Cu-Au skarn/replacements have been documented only in the Concepcion del Oro district. ZnPb-Ag ± Au replacements in limestones occur away from the intrusive contact but appear

to originate at the contact. Narrow mineralized skarn is present in the root zones of some Pb-Zn chimneys in Providencia, and possibly Noche Buena. Carbonate replacement deposits have been documented in the Concepcion del Oro, Providencia and Noche Buena districts, particularly in Providencia, but also at Santa Rosa and Melchor Ocampo. Porphyry copper style mineralization related to apophyses on the margin of major igneous bodies exist at Providencia, Noche Buena and Melchor Ocampo, and is suspected also in Concepcion del Oro. While these systems generally lack secondary enrichment in the districts where they occur, it has been documented to play an important role in upgrading both skarn and carbonate replacement deposits, mainly in Concepcion del Oro and Providencia, but also in the Noche Buena and Melchor Ocampo districts. Apparently associated with a concealed porphj^y cupola, the Penasquito base and precious metal mineralization constitutes an unusual mineralization style in the region. Distal Au-Ag mineralization styles with or without base metals occurs at El Saltillito, Melchor Ocampo, and Noche Buena. Correlation between mineralization types, igneous lithologies, and occurrences within the central sector of the Sierra Madre Oriental are presented on Tables 1.3.3.1 through 1.3.3.7. While Cu ± Au dominated mineralization types occur both in early mafic/alkalic and later intermediate intrusives, it is in the latter that these are economic. Economic Pb-ZnAg mineralization is also associated primarily with intermediate intrusives. Occurrences of Pb-Zn-Ag mineralization related to the early suite are uncommon or absent. This suggests that economic Cu ± Au mineralization associated with Paleocene-Eocene

intermediate magmatism is likely the result of recycling and concentration from subeconomic mineralization related to Late Cretaceous mafic/alkalic magmatism. Economic Pb-Zn-Ag mineralization, on the other hand, appears to be linked with either PaleoceneEocene intermediate or Oligocene felsic magmatism, which is consistent with other areas of northern Mexico.

Table 1.3.3.1: Correlation table of localities with documented radiometric ages, mineralization types, occurrences, observed igneous lithologies and associated alteration assemblages for selected intrusive centers in the central sector of the Sierra Madre Oriental (eastern intrusive centers). District/Locality Mineralization (age/intrusive) style /commodity Cerro disseminated Pedregoso COA Fe-Cu ± Au? 75 Ma (w.r. KAr)/ syenite El Saltillito ZAC unknown age

Matehuapil ZAC unknown age El Rabioso ZAC unknown age Rocamontes COA 8 0 - 7 1 Ma (w.r. KAr)/ syenite

Cu-Fe ± Au skam Au-Ag veins, porphyry Cu? Cu-Fe ± Au skam

Mine/prospect Associated igneous rock and alteration (rock type/assemblage minerals) /occurrence El Garabatillo syenite/fault-controlled, strong biotite-chlorite-magnetite ± sulfide mine veins; plagioclase alteration to albite Canada La syenite/pervasive, strong biotite-chlorite-magnetite ± sulfide Pastora prospect El Saltillito mine monzonite/gamet-sulfide ± wollastonite-epidote skam in limestone; actinolite alteration of hornblende; sericite alteration of plagioclase; chlorite alteration of biotite; Clavellinas mine dacite porphyry/sericite-quartz ± sulfide veins; sericite-clay ± sulfide alteration prospects Unknown

Cu-Fe ± Au skarn

prospects

disseminated Fe-Cu ± Au?

Guadalupana and monzonite, syenite/pervasive, moderate biotite-chlorite-magnetite ± Nortena workings sulfide, sericite-chlorite alteration, quartz-sulfide veins

Cu-Fe ± Au skam

Santa Rosa, Caballero and gamet-epidote ± chlorite homfels in limestone, spotted andalucite? Canoas prospects homfels on shales

Unknown

ON

Table 1.3.3.2: Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences. and associated alteration assemblages for the Concepcion del Oro district. District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Concepcion del Cu-Fe ± Au Cabrestante, Tajo Oro ZAC de Azules' skam Palomas, Cata 40 Ma; 37.5 Ma Arroyo, Esperanza, (biotite; KAnita and Los feldspar KAr)/ Reyes mines; also quartzSombrero monzonite Montado, and (phase HI) Aranzazu^ Pb-Zn-Ag ± Cu skam

La Perlita, Cabrestante

massive oxide Fe ± Cu-Au skam /replacement Pb-Zn-Ag ± Au carbonate replacement

Promontorio, Animas, El Carmen/ Sol y Luna La Blanca, La Cuachiranga, Los Diamantes, Angela, La Laja, El Balcon

Associated igneous rock and alteration (rock type/assemblage minerals) monzonite, quartz-monzonite/pyroxene ± sulfide skam in limestone (Aranzazu), pyroxene-wollastonite ± scapolite skam (Concepcion del Oro); gamet ± pyroxene-wollastonite-sulfide skam in limestone (Aranzazu, Concepcion del Oro, gamet-sulfide ± pyroxene-wollastoniteepidote skam in limestone (Aranzazu, Concepcion del Oro), actinolite alteration of homblende; sericite alteration of plagioclase; chlorite alteration of biotite

monzonite, quartz-monzonite/gamet-sulfide ± wollastonite-epidote skam in limestone; gamet replacement of intmsive matrix; sericite alteration of plagioclase monzonite, quartz-monzonite/gamet ± pyroxene-wollastonite skam in limestone, massive magnetite ± chalcopyrite limestone replacement, chalcopyrite-specularite hematite veins with calcite gangue, sericite alteration of plagioclase, chlorite alteration of homblende and biotite carbonate-sulfide replacement

The Tajo de Azules pit in Concepcion del Oro contained a number of underground mines: El Porfido, Azules, Azules Arroyo, Elma, and La Mexicana. ^ The area of Aranzazu includes the following underground mines: San Antonio, Comidos de Jaime, Socavon General, San Carlos, San Juan and El Guaje.

Table 1.3.3.2 (continued). District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Concepcion del Pb-Ag ± Au Las Guillotinas Oro ZAC veins area 40 Ma; 37.5 Ma secondary Tajo de Azules, (biotite; Kenriched Cu, Cata Arroyo, feldspar KAr)/ Au Esperanza, Anita, quartzPalomas(Cu), Mina Vieja, monzonite Concepcion del (phase ni) Oro (Au)

Associated igneous rock and alteration (rock type/assemblage minerals) none observed monzonite, quartz-monzonite/chlorite alteration of hornblende and biotite, clay alteration of plagioclase and K-feldspar, chlorite/clay alteration of garnet and pyroxene (Cu), silicification and leaching (Au)

ON

Table 1.3.3.3; Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences. and associated alteration assemblages for the Providencia district. District/Locality Mineralization Mine/prospect /occurrence (age/intrusive) style /commodity Providencia Cu-Fe ± Au Catasillas, Cuerpo ZAC skam El Cobre, Gloria Estela area 40 Ma; 34.5 Ma (biotite; muscovite, KAr)/ quartzporphyry Cu Gloria Estela area, monzonite El Cobre area (phase I)

Pb-Zn-Ag ± Au carbonate replacement

San Marcos, San Eligio, Albarradon, Bonanza, Providencia, Animas, Zinc West, Salaverna, San Vicente, El Rucio, San Gregorio, Via Libre

secondary enriched Au

Refugio, Alicante

Associated igneous rock and alteration (rock type/assemblage minerals) monzonite, quartz-monzonite/actinolite alteration of hornblende, sericite alteration of plagioclase, chlorite alteration of hornblende and biotite, sericite-clay ± sulfide alteration; alunite veins, clay alteration of plagioclase and K-feldspar, gamet-sulfide ± wollastonite-epidote skam in limestone, chlorite-clay alteration of garnet monzonite, quartz-monzonite/actinolite alteration of hornblende, sericite alteration of plagioclase; chlorite alteration of hornblende and biotite; sericite-quartz ± sulfide veins; sericite-clay ± sulfide alteration, claysulfate alteration, sulfate veins, clay alteration of plagioclase and Kfeldspar carbonate-sulfide replacement

silicification and leaching ON

Table 1.3.3.4: Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Noche Buena district. District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Noche Buena Cu-Fe ± Au San Francisco del ZAC skam Alto unknown age porphyry Cu? Aurora-Amarillas area

Pb-Zn-Ag ± Au carbonate replacement

epithermal Pb-Ag-As-Sb ± Au

Associated igneous rock and alteration (rock type/assemblage minerals)

gamet-sulfide ± wollastonite-epidote skarn in limestone, chlorite alteration of garnet biotite alteration, sericite alteration of plagioclase, chlorite alteration of biotite, sericite-quartz ± sulfide veins, sericite-clay ± sulfide alteration, clay-sulfate alteration, sulfate veins, gypsum alteration of limestone, gamet-epidote ± chlorite-sulfide skam in limestone, actinolite-chlorite ± sulfide alteration in shales La Blanca, Beatriz, gamet-sulfide ± wollastonite-epidote skam in limestone; carbonateSan Jose El Chivo, sulfide replacements Mina Vieja, Noche Buena mines; Santo Nino mine, Potrero, La Negra and La Cruz mines Noche Buena mine none observed

Table 1.3.3.5: Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the smaller districts/occurrences in the central sector of the Sierra Madre Oriental. District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Santa Rosa Pb-Zn-Ag-Au Santa Isabel mine, ±Cu ZAC Tres Marias area, carbonate La Montaiia area unknown age replacement San Feliciano oxide Fe ± Cu Puerto del replacement ZAC Almagre area unknown age Au-Ag veins Los Gemelos Parroquias ZAC unknown unknown unknown age El Penasquito ZAC 30 Ma, (method unknown)/ quartz-feldspar porphyry

stockwork and disseminated Pb-Zn-Ag-Au ± Cu in breccia pipes

Chile Colorado, Azul, Azul North and Outcrop (Penasco) breccia prospects

Associated igneous rock and alteration (rock type/assemblage minerals) dacite, quartz-latite/sericite alteration of plagioclase; sericite-quartz ± sulfide veins; sericite-clay ± sulfide alteration, carbonate-sulfide replacement hematite breccias with carbonate recrystallization haloes

Unknown monzonite porphyry, quartz-feldspar porphyry, dacite, quartzlatite/biotite alteration, epidote alteration of plagioclase, sericite alteration of plagioclase and K-feldspar, chlorite ± epidote alteration of hornblende and biotite, sericite-clay ± pyrite alteration, calcite-sphalerite ± pyrite-clay veins

O ON

Table 1.3.3.6: Correlation table of observed igneous lithologies and radiometric ages, with mineralization types, occurrences, and associated alteration assemblages for the Melchor Ocampo district. District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Melchor Cu-Fe ± Au El Cochino mine Ocampo ZAC skam unknown age porphyry Cu? Cerro de La Cruz area

Associated igneous rock and alteration (rock type/assemblage minerals) monzonite, quartz-diorite/actinolite alteration of hornblende, chlorite alteration of hornblende and biotite, epidote alteration of plagioclase, gamet-sulfide ± wollastonite-epidote skarn in limestone; gamet-calcite veins in skam monzonite, dacite porphyry/biotite alteration of homblende, sericite alteration of plagioclase, chlorite alteration of homblende and biotite, sericite-quartz ± sulfide veins; sericite-chlorite ± tourmaline disseminations; wollastonite ± amphibole-pyroxene? skam in felsite monzonite, quartz-diorite/biotite alteration of homblende, sericite alteration of plagioclase, sericite-quartz ± sulfide veins, garnet ± epidote veins, gamet-sulfide ± wollastonite-epidote skam in limestone, gametcalcite veins in skarn carbonate-sulfide replacement

Pb-Zn-Ag ± Cu skam

El Cajon mine, Veta Azul, Cerro del Oro area

Pb-Zn-Ag ± Au carbonate replacement

San Francisco mine, Veta Azul, Cerro del Oro area

Pb-Ag ± Au veins

Naranjera mine

sericite-clay ± sulfide alteration, clay-sulfate alteration and vuggy silica

epithermal Pb-Ag-Hg?

Cabo Terrez area

silicification and leaching

secondary enriched Au?

El Cajon mine

ON -J

Table 1.3.3.7: Correlation table of localities with documented radiometric ages, mineralization types, occurrences, observed igneous lithologies and associated alteration assemblages for selected intrusive centers in the central sector of the Sierra Madre Oriental (western intrusive centers). District/Locality Mineralization Mine/prospect (age/intrusive) style /commodity /occurrence Nuevo Rodeo unknown unknown ZAC unknown age Caopas ZAC unknown unknown unknown age San Rafael ZAC Pb-Zn-Ag ± unknown 80 Ma (w.r. Pb- Au carbonate replacement? a)/ syenite quartz-Au veins Pico de Teyra unknown Many small ZAC workings including San Francisco, San unknown age Jose and La Masa Cerro Prieto skam/vein Fe- Veta Constitucion DGO Cu ± Au; unknown age disseminated Rosikler prospects Fe-Cu ± Au quartz-Au veins

El Orito prospect

Associated igneous rock and alteration (rock type/assemblage minerals) Unknown

Unknown sericite alteration of plagioclase, biotite alteration of hornblende, chlorite alteration of hornblende and biotite; gamet-epidote ± chlorite homfels in limestone, carbonate-sulfide replacements?

Unknown

diorite, syenite/pyroxene-gamet-albite-sulfide veins with albite ± epidote haloes, epidote ± sulfide alteration of plagioclase syenite? gabbro?/fault-controlled, strong biotite-chlorite-magnetite ± sulfide veins; possibly pervasive biotite-chlorite-magnetite ± sulfide, albite veins sericite-clay ± sulfide alteration of shale ON 00

69

Chapter n PETROGRAPHY AND GEOCHEMISTRY IN THE CONCEPCION DEL ORO AREA. 2.1 hitroduction hi the following chapter, a district-scale geologic summary and petrographic, major, trace and rare earth element geochemistry data are presented for each of the four districts considered in this study. These are the result of several field seasons during which, in addition to sample collection, lithologic and alteration mapping within these districts, reconnaissance visits, sample collection and, in some cases, reconnaissance mapping was undertaken at a number of other intrusive centers in the northern Sierra Madre Oriental, the central sector of the Sierra Madre Oriental, its confluence with the Sierra Madre Occidental and northeastern Mexico. 2.2 Methodology 2.2.1 Sample preparation Preparation of igneous samples for bulk geochemical analysis took place at the facilities of the Geosciences Department, University of Arizona. Samples were selected to minimize, where possible, alteration effects. Since the igneous intrusions in the present work are adjacent to, and often weakly mineralized or related to strongly mineralized areas, some samples have nevertheless some degree of alteration or weathering. Weathered, rust or varnish-coated surfaces and altered areas within the samples were cut with oil-based, 18" Lorton Rock Slab and Buehler Labpro Slab saws, trimmed with a water-oil emulsion-based Highland Park Manufacturing 10 TS-R trim saw and washed and brushed several times with an Alconox soap-water mix to remove the oil. Locally oil

70

remaining in cracks had to be removed by repeated brushing or with acetone, and in some cases the sample was broken open to allow for soap or acetone to access residual oil. The samples were subsequently crushed with a Joy Manufacturing Company rock crusher featuring iron jaws. Once crushed, the samples were quartered to create splits of the original material and powdered with a Spex shatter box alumina mill for about 20 to 25 minutes. After powdering the split, it was packaged in clean Ziploc freezer plastic bags. Before and in between crushing runs all the elements of the jaw crusher in contact with the samples were buffed with a steel brush and wiped clean with acetone. Similarly, before and in between powdering runs the shatter box alumina mill was cleaned with clean quartz, in some cases several times, brushed and cleaned with compressed air and the closing rubber ring washed with a commercial dishwashing detergent and air dried. Sample splits were sent off to Australia National University for major and trace element analysis by X-ray fluorescence (XRF) and neutron activation analysis (NAA) techniques. For major element determination (Si02, TiOa, AI2O3, Fe203, MnO, MgO, CaO, Na20, K2O, P2O5, SO3), samples were prepared as glass discs following the method of Norrish & Hutton (1964), with the exception that the flux used consisted of 12 parts lithium tetraborate to 22 parts lithium metaborate. Glass discs were prepared by the quench press method, which produces thin glass discs which are critically thick up to CuKa radiation for the present flux. These glass discs were measured on a Phillips PW2400 wavelength dispersive XRF spectrometer. Detection limits for the major elements are generally around 0.01%. Most trace elements were determined on pressed powder samples using a SPECTRO X-Lab energy dispersive XRF spectrometer using secondary

71

targets to modify the primary tube radiation for sample excitation. Detection limits for elements with atomic number Z>30 are given by ANU at around 0.3 ppm, while for elements around Z=50 (such as Ag, Cd and Sn) they are below 0.1 ppm. In some cases samples splits were also sent to XRAL analytical services for complete REE analysis by ICP. The detection limits ranged from 0.05 ppm (Eu, Ho, Lu) to 0.2 ppm (Pr). Isotopic geochemical analyses for Rb-Sr and Sm-Nd were performed by Damian Hodkinson and Clark Isachsen at the Geochemistry Laboratory, while oxygen isotope analyses were performed by Mark Rollog and Leo Verdugo at the Stable Isotope Laboratory in the Geosciences Department. Uncertainties for ^^Rb/^^Sr and ratios are less than 0.5% and 1.0% respectively (Isachsen, personal communication; Wodzicki, 1995), while for 5'^0 it is, for the samples in this study specifically, less than 5.5% and has been documented to be generally around 0.17%o (Rollog, 2003). Sample materials for petrography and electron microprobe analysis were prepared by Quality Thin Sections, Inc. of Tucson. Petrographic examination was performed on polarizing microscopes at the University of Arizona, the U.S. Geological Survey and Desert Archaeology, Inc. of Tucson.

72

2.2.2 Data Analysis Major and trace element data were corrected using the detection limits provided by the analytical service providers. CIPW and mesonormative norms were calculated using NewPet geochemical software (Clarke, D., 1987-1993). K2O vs. NaaO and log(K20/Na20) vs. LOI are used as a means to characterize as a first approximation the alteration of intrusive rocks. According to compiled data in Wilson (1989), unaltered samples of volcanic rocks have a proportion of K2O to Na20 relatively close to unity. Structurally bound water (as LOI) is another factor used in the assessment of alteration intensity in volcanic rocks and in granitoids associated with tungsten skams (van Middelaar, 1988; Keith et al., 1989). It is also implicit in the formulation of alteration reactions in porphyry coppers (Creasey, 1966; Meyer & Henley, 1967; and many others). The limits for Wilson's fresh igneous rock field on a K2O vs. Na20 plot have been converted to log units in order to eliminate some of the distortion on the K2O vs. Na20 diagram and allow the incorporation of LOI in the assessment. These two diagrams will be referred in as alteration diagrams. A number of normalization and classification diagrams are used, in addition to Harker diagrams, to compare samples in a more general petrographic/petrologic framework: C/CNK vs. K/CNK (Ca0/Ca0+2Na20+2K20 vs. 2K20/Ca0+2Na20+2K20), A/CNK vs. K/CNK (Al203/Ca0-l-2Na20+2K20 vs. K/CNK) and A/CNK vs. Si02; K2O vs. Si02 and total alkali vs. silica (TAS or Na20+K20 vs. Si02) after Le Maitre et al. (1989); as well as classification diagrams based on molecular or CIPW normalization schemes ~ QAP diagram of Le Maitre et al. (1989) after

73

Streckeisen

(1976),

and

peraluminous

index

-defined

as

molar

Al203/y2(Ca0+Na20+K20)- vs. differentiation index -defined as the sum of normative quartz, albite and orthoclase. Trace elements were generally normalized against chondritic values published by Thompson (1982). Alternative values have been used, however, for Ba (Ba=3.85 ppm, chondrite, Hawkesworth et al. 1984); as well as for Rb, K (Rb=0.35 ppm, K=120 ppm, primitive mantle. Sun 1980) and U (U=0.013 ppm, chondrite and undepleted mantle data. Sun 1980). Values for REE have been normalized against chondritic values published by Taylor & McLennan (1985). Rb/Sr and Sm/Nd isotopes were analyzed by TIMS following the methods of Patchett and Ruiz (1987), while oxygen isotopes were analyzed by fluorination extraction and catalytic conversion to CO2 according to methods by Clayton (1955) and Taylor & Epstein (1962).

74

2.3 Geology, petrography, major, trace and REE geochemistry of igneous rocks in the Concepcion del Oro area, by district 2.3.1 Local geology 2.3.1.1 Concepcion del Oro Located in the north of the Mexican Central Plateau, at the southeastern end of the Sierra de La Caja, in northeast Zacatecas state, the Concepcion del Oro stock is an intrusion of intermediate composition. Topographically it rises 850m from the town of Concepcion del Oro to the summit of Cerro de Los Balcones, 2918m above sea level. It can be subdivided in at least three areas: the lower Concepcion del Oro valley occupying the northeast flank of the intrusion, the higher Aranzazu dell in the north and northwest, and the high central area of Las Mesas to the southwest, south and southeast. It comprises rocks ranging in composition from monzonites and quartz-monzonites to granodiorites. It is emplaced in the core of a north to northeast vergent arcuate anticline. On the northwestern and northern flanks, it comes in contact with the upper Jurassic limestones, while on the western, southwestern, and northeastern flanks, it crosscuts the upper Jurassic and lower Cretaceous stratigraphic section. On the southwestern flank, the intrusive cuts through these units in a straightforward fashion, but on the northeastern flank several faults in the lower Concepcion valley allow it to come in contact with the lower Cretaceous Taraises, Cupido and Cuesta del Cura formations. Along the ridge separating the lower valley from the high mesa, two roof pendants of Zuloaga limestone are known: the Animas-Promontorio and the Restauradora-El Carmen roof pendants.

75

As a result of district-scale lithologic and alteration mapping several intrusive phases where identified: two different types of an early igneous phase occurring in two different outcrop areas of the intrusion; a weakly porphj^ritic to equigranular, as well as a strongly porphyritic second phase; and a late equigranular phase with associated aplite dikes. Table 2.3.1.1 summarizes estimated frequencies of mineral constituents and their textures for the different intrusive phases. The organization of these into the expressed temporal sequence is the result, primarily, of observed cross-cutting relationships in the field. Along the contacts between the intrusive and the carbonate host rocks massive pyroxene, massive garnet and more locally massive magnetite skarn bodies are present, grading into irregular garnet skams following lithological contrasts within the limestones and into mineralized chimneys, carbonate replacement zones and distal limestone recrystallization zones. Toward the central part of the intrusive outcrop at Las Mesas, alteration appears associated to a strong northwest structural fabric with the presence of quartz- and quartz-tourmaline ± pyrite veins and breccias, locally forming chimneys. The distribution of these phases and their variants is only relatively well defined, with the early phases la and lb occupying approximately 25% to 30% of the total outcrop area mostly in the northwestern part of the intrusion, at Aranzazu, but also around the mine and town of Concepcion del Oro on the northeastern flank. The intermediate phases Ila-c are present in the central, northeastern and northern flank of the intrusion and occupy approximately 35% to 40% of the total outcrop area. The late phase EUa takes 35% of the total outcrop area in the central, eastern and southern part of the stock. Late mb phase is present as dikes cutting predominantly phase EH, and is of minor importance.

Table 2.3.1.1; Qualitative mineral composition of igneous phases in the Concepcion del Oro intrusion. Igneous phase Petrographic and sample rock compostion Textures Phase la hornblende weakly (SMCA-1) quartz-monzonite porphyritic (SMCA-5)

Minor constituents/ Crystallization Major constituents accessories sequence plagioclase, K-feldspar, quartz, biotite/ Plagioclase—^opaques^ clinopyroxene, hornblende. magnetite, apatite (cpx?)-^homblende^ biotite-^K-feldspar^ quartz plagioclase, K-feldspar, hornblende/ quartz, biotite magnetite, apatite, zircon

Phase lb

hornblende porphyritic quartz-monzonite

Phase Ha* (SMCA-8)

homblende-biotite equigranular plagioclase, K-feldspar, hornblende, biotite quartz-monzonite

quartz/ magnetite, clinopyroxene, apatite

Phase nb (SMCM-6)

biotite-homblende porphyritic monzonite/ quartz-monzonite

plagioclase, K-feldspar, hornblende, biotite

quartz/ magnetite, apatite

Phase He (SMCS-7)

homblende(biotite) monzonite

plagioclase, hornblende, biotite?

apatite, zircon, pyrite, magnetite

strongly porphyritic

Plagioclase^opaques^ clinopyroxene^homblende ^biotite^ K-feldspar^ quartz^ (K-feldspar+quartz intergrown) Plagioclase^opaques—> homblende-^biotite^ plagioclase (intersertal)^ biotite^(Kfeldspar+quartz intergrown)

* This phase includes inclusions of dioritic composition, characterized by an equigranular texture and a mineral composition dominated by about equal amounts of plagioclase and pyroxene, with interstitial K-feldspar and minor hornblende.

Table 2.3.1.1: (continued). Igneous phase and sample Phase nia {SMCM-7) (SMCM-9) (SMCM-10) Phase EHb (SMCM-11)

Petrographic rock compostion biotite(homblende) monzonite

Textures Major constituents equigranular plagioclase, biotite, Kfeldspar

biotite -bearing aplite

equigranular plagioclase, K-feldspar, quartz

Minor constituents/ Crystallization accessories sequence hornblende, quartz/ Plagioclase-^opaques—^ magnetite, apatite, hornblende—^biotite-^Ksphene, zircon feldspar-^quartz biotite, zircon

Plagioclase-^quartz-^ homblende^biotite-^ opaques^K-feldspar^ quartz^(K-feldspar+quartz intergrown)

* This phase includes inclusions of dioritic composition, characterized by an equigranular texture and a mineral composition dominated by about equal amounts of plagioclase and pyroxene, with interstitial K-feldspar and minor hornblende. Samples in italics were not subject to geochemical analysis either due to alteration or to avoid repetition.

Magnetic North

Zuloaga Formation

Caja Formation SWCA-5

Taraises Formation

Wurtel

Cupido Formation ARAMZAZU

Pefla Formation

Cuesta del Cura Formation

Indidura Formation

ARROYOS AZULES

WiWf

Phase 11

Caracol Formation

JiWiWrV iWi^Mr^rV.

CATARR

Quaternary alluvium

SM^M-6

Quartz - sericite - tourmaline ± pyrite breccias

LAS ANIMAS

SMCM-10 Wr^ WihV:}

r^iViVr^r

///

SMCM-7

Quartz - sericite alteration (moderate / strong)

SMCM-9 SMCM-ll

Phase

SCK-Q4 S^R-05 I SOL

a

///

Observed / Inferred /Suspected contact

X >9

Dip / Overturned Dip

A r-rVi^iVr^i^i

Quartz - sericite - tourmaline ± pyrite veins

Topographic point

trtrlftirtTtTj Mine

Sample

Figure 2.3.1.1; Simplified overview map of the Concepcion del Oro intrusion with sample locations and igneous boundaries. -J

00

2.3.1.2 Providencia The Providencia stock is located to the northwest, in very close proximity to the Concepcion del Oro intrusion, along the axis, but also on the northeastern flank of the Sierra de La Caja-Sierra de Concepcion del Oro. Topographically it rises approximately 750m from the Canada de Providencia, on the north side of the intrusion, to the summit of Cerro de La Sorpresa, 3174m above sea level. It can be subdivided into a northwest flank, along the Canada de Providencia from the Gloria Estela area to the abandoned Providencia camp; a northern and northeastern flank, in the area of the El Veintidos prospect; a southeastern flank, around the San Marcos and San Eligio mine areas; a southern and southwestern flank, toward Salavema; and a high ridge area around the Cerro de La Sorpresa. It comprises igneous rocks ranging in composition from monzonites and quartzmonzonites to granodiorites that on the northern side crosscut the entire Jurassic and Cretaceous stratigraphic sequence in the area, while on its southern side comes in contact only with the upper Jurassic and lowermost Cretaceous section. The ridge area above Puerto de San Eligio toward Cerro del Temeroso and Cerro de La Sorpresa, has several areas of calc-silicate alteration, wollastonite and vesuvianite-garnet skarns, and associated limestone outcrops with a general NW-SE orientation, that are thought as part of the roof of the intrusion but lack the depth continuity to be considered roof pendants. On the southwestern flank several highly mineralized high-temperature, carbonatehosted chimneys and mantos occur at some distance from the intrusive but originating at

the contact. A number of porphyritic and subvolcanic phases appear to be associated with the Providencia intrusion: On the north flank the area of Gloria Estela is host to a porphyry apophysis composed of several igneous phases and associated with calc-silicate alteration and mineralization. Further to the east, the area of El Veintidos host a rather massive dike that is associated to sericitic and carbonate alteration and minor disseminated sulfides. Finally, on the southeastern side, several felsite bodies occur between the area around the San Marcos and San Eligio mines. A rhyolitic plug at least is also reported to the north of Salavema. At the Salavema mine at least one porphyry dike is associated with calc-silicate alteration and possibly disseminated Pb-Zn mineralization. In the Providencia intrusion nine intrusive phases were identified. The distribution of these phases, including their variants is relatively well defined with the early phase I occupying approximately close to 50% of the total outcrop, mostly in the central and northeastern part of the intrusion but also in the high ridge area north of the San Eligio and San Marcos area; the intermediate phases Ila-c and EUa are limited to the area of Gloria Estela in the northwestern flank, while phase Hlb is limited to the area of Salavema, making overall up to 10% of the total area. Phase IVa crops also in the northwestern side of the intrusion, where it occupies about 15% to 20% of the outcrop. Phase rVb is present mainly in the southeastern and eastern part of Providencia between San Eligio, San Marcos and the upper Aranzazu dell in Concepcion del Oro, making around 20% of the outcrop of the intrusion. Finally, phase V is narrowly limited to the northeastern flank of the intrusion and makes probably less than 5% of total outcrop.

81

Table 2.3.1.2: Qualitative mineral composition of igneous phases in the Providencia intrusion. Igneous phase Petrographic and sample rock compostion Textures Phase la hornblende weakly (SMP-1) monzonite to porphyritic quartz-monzonite Phase Ha biotiteporphjTitic (SMPG-1) (homblende) monzonite Phase nb (SMPG-2) Phase He (SMPG-3) Phase in iSMPG-5) Phase EHb Phase rVa (SMPW-l) (SMPW-3) Phase rVb Phase V (SMPV-l)

Major constituents plagioclase, K-feldspar, hornblende plagioclase, K-feldspar, biotite

biotite(homblende) quartz-monzonite biotite(homblende) monzonite biotite monzonite

porphyritic plagioclase, K-feldspar, to biotite, quartz equigranular strongly K-feldspar, plagioclase porphyritic

(biotite) latite

strongly K-feldspar, plagioclase porphyritic equigranular plagioclase, biotite

equigranular plagioclase, biotite, Kfeldspar biotite quartzstrongly plagioclase, K-feldspar monzonite porphyritic biotite monzonite weakly plagioclase, K-feldspar porphyritic

biotite-bearing micro granodiorite

Samples in italics were not subject to geochemical analysis due to alteration.

Minor constituents/ accessories biotite, quartz/ magnetite, apatite hornblende, quartz/ magnetite, apatite, zircon, epidote, hematite, rutile hornblende / apatite, zircon, clinozoisite hornblende, biotite/ apatite, zircon quartz/ apatite, zircon, rutile biotite, quartz/ pyrite quartz, biotite/ apatite, zircon, magnetite, sphene (biotite), quartz/ pyrite K-feldspar, quartz/ apatite, pyrite

Crystallization sequence

Magnetic North 9° 30'

^rVrVr^rW

^

Zuloaga Formation

Caja Formation

•"* liiiiijifeii SMPW-1 SMPW-3.

Taraises Formation

3i!i

Cupido Formation

Wi?i Wr?T?rir.

Pefia Formation

SSi!!J3

VIA LIBRE

b

Cuesta del Cura Formation

Indidura Formation

Caracol Formation

Parras Formation

VlV

ELIGIO

Tertiary volcanics

WiWf

m

Quaternary alluvium

SANGREGORIO ^ SALAVERNA

ito

W

mmn

~ ^ e r VW - MWaik• <•'•'5•*•<*•'«• i Vi r- V .^^ViViWi^W JiVrWrVr^ rViVrVr^AfrV ViWx^rWiV

i-rWrVr^W

0

1 km

2 km

ARANZAZU '^XS

/ / /

Observed / Inferred /Suspected contact

X ^

Dip / Overturned Dip

A

Topographic point

^

Mine



Sample

4 km

Figure 2.3.1.2: Simplified overview map of the Providencia intrusion with sample locations and igneous boundaries. 00

83

2.3.1.3 Noche Buena The Noche Buena intrusive center is emplaced at the western end of the Sierra de La Caja anticline, to the south and west of the small mining camp of Noche Buena. Topographically it rises 430m from the mining camp and close to 500m from the lower Canada de Barros creek to the summit of Cerro Beatriz, at 2660m above sea level. It is subdivided in this study in an eastern part, comprising the Noche Buena village and mine that corresponds to the outcrop of the first phase of intrusion; a southwestern flank, to the south of Cerro Santo Nino; and a northwestern flank to the north of Cerro Santo Nino and comprising the upper Canada de Barros and the Aurora-Amarillas mine site. Lithologically, the eastern mass, emplaced on the northern flank of the La Caja anticline and centered around the high ridge of Cerro Beatriz, is made up of a mafic diorite while a monzonite to quarz-monzonite body accompanied by several quartzmonzonite porphyries on the northwestern side constitute the western mass, intruding the northern flank of the anticline closer to the axial trace and centered around Cerro Santo Nino. The eastern mass crosscuts the Cretaceous stratigraphy starting with the Cupido formation, while the western intrusion comes into contact with the upper Jurassic and lower Cretaceous stratigraphy. Contacts between the eastern intrusion and the clastic upper Cretaceous Indidura, Caracol and Parras formations results in the formation of calcsilicate hornfels, while contact with the predominantly calcareous lower Cretaceous section results in narrow garnet-pjroxene skam and, further away, mineralized carbonate

84

replacement chimneys and mantos similar to those in the Providencia district. Contacts between the western igneous intrusive and the upper Jurassic-lowermost Cretaceous carbonate section on the southwestern side results in massive pyroxene-garnet skam with disseminated copper mineralization. Contact with the lower Cretaceous stratigraphy on the northwestern side is characterized by calc-silicate hornfels in the clastic horizons, garnet-pyroxene skarns but also carbonate replacement in the calcareous members. The porphyry apophysis in the area of Aurora-Amarillas is associated with calc-silicate and high-level clay-alunite-sulfate alteration and mineralization. Late dikes are present on both the northern and southern flanks. Local miners mention a blue dike being used as a guide to ore in the Noche Buena mine. Whether these are related to alteration and mineralization is, however, unclear. Finally, on the southeastern side, a felsite body has been indicated by Rogers et al. (1964), however, it was not visited during the course of district-scale map. Six intrusive phases were identified in the Noche Buena intrusion. The distribution of these phases is approximately as follows: phase I occupies approximately 50% of the total outcrop area, in the eastern part of the intrusion; around 30% of the intrusive outcrop corresponds to the intermediate phase

n,

mainly around Cerro Santo Niiio but

predominantly to the south; the various porphjry phases occupy the remaining 15% to 20% of the outcrop with phases IHa and lUb making up the majority of it. Phase Die, the strongly porphyritic phase immediately around the Aurora mine shaft, and phase IV dikes have small outcrop areas and can be neglected with respect to total area proportion (less than 5% of total outcrop).

85

Table 2.3.1.3: Qualitative mineral composition of igneous phases in the Noche Buena intrusion. Igneous phase and sample Phase I (SMNN-1) (SMNC-1) (SMNC-2) Phase n iSMNA-2) (SMNA-4) Phase nia (SMNC-4)

Phase nib (SMNM-2)*

Petrographic rock compostion hornblendeP5'roxene diorite

homblende-biotite porphyritic monzonite

plagioclase, K-feldspar, quartz,

biotite-homblende porphyritic plagioclase, K-feldspar, quartz-monzonite to hornblende equigranular feldspar-biotite quartz-latite porphyry

Phase nic Phase rv (SMNC-5) (SMNC-6)

Textures Major constituents equigranular plagioclase, K-feldspar, clinopjToxene

feldsparhornblende quartz-latite

porphyritic

plagioclase, K-feldspar, quartz

strongly porphyritic strongly porphyritic

K-feldspar, plagioclase, quartz plagioclase, hornblende

* Sample SMNM-2 was analyzed for oxygen isotopes by Rollog (2003) as sample SMNM-. Samples in italics were not subject to geochemical analysis due to alteration.

Minor constituents/ accessories hornblende/ biotite, magnetite, apatite biotite, hornblende/ apatite, zircon quartz, biotite, clinopyroxene?/ magnetite, apatite, epidote, actinolite biotite, hornblende/ apatite, zircon biotite/ apatite, zircon K-feldspar, quartz, biotite/ magnetite, apatite, zircon, sphene

Crystallization sequence

Magnetic North 9° 30'

Zuloaga Formation

Caja Formation

Taraises Formation

Cupido Formation

Pefla Formation '•iVrr''T'r' -r^^iT^rr" WrWr

Noche Buena

WjWX^

SMNM'Z

Cuesta del Cura Formation

Potrcro P Indidura Formation

SMNN

rx'rr^i rlri-i

iWrWr

IL^WrWrXrVVWrV

Pha^ IV (dike) 5. SMNC-6

SMN

Phase I iWrW ViWi^iWi WiWrW WrV

SMNC-1 SMNC

Caracol Formation

Phase III

Phase 11

Parras Formation SMNC-4

Tertiary conglomerates

n Francisco del Alto

Tertiary volcanics

Quaternary alluvium

0

1 km

2 km

4 km

It':

Observed / Inferred /Suspected contact

H >9

Dip / Overtumed Dip

Mine



Sample

Figure 2.3.1.3; Simplified overview map of the Noche Buena intrusion with sample locations and igneous boundaries. 00

ON

2.3.1.4 Santa Rosa This locality constitutes a circular depression located in the central section of the Sierra de Santa Rosa range, southeast of Concepcion del Oro. On its southeastern margin, Cerro Colorado rises 400m above the floor of the valley to an elevation of approximately 2930m. Lithologically, Cerro Colorado comprises a dacitic porphyry agglomerate with relatively large feldspar phenocrysts, fragments and a significant amount of quartz eyes in a fine grained matrix. Vesicles and limestone fragments are common. The amount of fragments included in the volcanic agglomerate however varies with location, being the highest along the contact to the Zuloaga limestone, particularly on the north side of the valley, in the area of the old La Montana workings. To the northwest a dike composed of a porphyritic dacite similar to that of the main mass can be followed from the vicinity of the Santa Rosa valley toward Puerto Blanco pass. The Santa Rosa plug intrudes for the most part upper Jurassic limestones of the Zuloaga formation at the core of the anticline. On its southeastern and southern side it also comes into contact with the uppermost Jurassic unit, the La Caja formation, and the lowermost units of the lower Cretaceous section, the Taraises and Cupido limestones. In all cases it forms mineralized carbonate replacements and veins, which occur preferentially along the northeastern, eastern and southern sides.

88

Table 2.3.1.4: Qualitative mineral composition of igneous phases in the Santa Rosa igneous center. Igneous phase and sample Phase I (SMRN-1) (SMRN-2*)

Petrographic rock compostion Homblendebiotite quartzdacite

Textures strongly porphyritic

* Sample corresponds to the chilled margin of the dike.

Major constituents plagioclase, K-feldspar, quartz

Minor constituents/ accessories hornblende. biotite/ magnetite, apatite

Crystallization sequence

T T T T T T T

^^^^is=i^ljXjXjXjXfLj:ij-X £^$sM.,XtX,X,X^XVX^X ^^^^S$2^X»X,X,X,X,X yvvvvy-^>¥i:tg>-^

Magnetic North 9° 30'

Zuloaga Formation

Caja Formation

:ill!llli

Taraises Formation

Cupido Formation

...5a Pefia Formation

•j^jXjXjj

Cuesta del Cura Formation

Indidura Formation jt 'vTi'! ^ fm:M

Caracol Formation Tertiary igneous agglomerate

I

Quaternary alluvium

/

/

X

^

V'



jXjXjXjXjXjTjXjlJIj^ 1 km

2 km

Figure 2.3.1.4: Simplified overview map of the Santa Rosa igneous center with sample locations.

/

Observed / Inferred /Suspected contact Dip / Overturned Dip

Mine

Sample

90

2.3.2 Major element geochemistry hi this section, major element data for representative samples of the different intrusions in the Concepcion del Ore area are presented. Sample preparation and analytical methods are discussed in the introduction to the chapter. Major element data, mesonormative and CIPW data for the different intrusions in the area can be found in Appendix n. 2.3.2.1 Concepcion del Oro Marker diagrams for the major elements in igneous phases of the Concepcion del Oro intrusion are presented on Figure 2.3.2.1.1. Samples belonging to phases lib. Ilia and mb (samples SMCM-6, SMCM-9, SMCM-10 and SMCM-11) describe, with progressively decreasing concentrations of Ti02, FeaOs total, MnO, MgO, CaO and P2O5, and increasing K2O with increasing Si02, what is perceived as a trend based on cross-cutting field relationships. Samples from the early phases la. Ha and Dc (samples SMCA-5, SMCA-8 and SMCS-7) show some differences; they appear in some diagrams to be outliers in Ti02, Fe203 totau MnO, MgO, CaO and P2O5, at lower concentrations than the trend described by phases lib, EUa and EHb. Some of the early phases appear as outliers at a higher concentration of Na20 than the previously described trend. Sample I-l, corresponding to a mafic enclave within an outcrop of phase Ha, has significantly lower concentrations in Si02, AI2O3, MnO, K2O and P2O5 and higher concentrations in Ti02, Fe203 total, MgO and CaO relative to all other samples.

Within the limits of Wilson's field for fresh igneous rocks and plus or minus two percent LOI, all samples can be considered to be unaltered except the late phase mb aplite sample SMCM-11, which appears to have noticeable K enrichment with a low LOI value (see Figure 2.3.2.1.2). Inclusion I-l on the other hand appears to be noticeably more sodic relative to the rest of the samples. C/CNK vs. K/CNK, A/CNK vs. K/CNK and A/CNK vs. SiOi show the later phases nb, nia and IHb as a trend of decreasing molar Ca and more or less constant molar A1

with increasing K or SiOa, while the earlier phases la, Ha and He are separate from this trend at lower Ca and A1 values. Inclusion sample I-l also shows lower A1 values against K and SiOi than the later phases n and EH, and more similar to phases la and Ila-c; it has however higher Ca contents than the latter, more in line with the later phases (see Figure 2.3.2.1.2). K2O vs. SiOa and total alkali vs. silica -TAS- closely relate all samples with the possible exception of inclusion sample I-l. All samples are high K calc-alkaline rocks ranging from borderline andesite-trachyandesite and dacite-trachydacite to rhyolite within the subalkaline field or at the limit between the subalkaline and alkaline fields, as defined by Irvine & Baragar (1971) and Kuno (1966) respectively (see Figure 2.3.2.1.2). In the latter TAS diagram the earlier phases la. Ha and He (SMCA-5, SMCA-8 and SMCS-7) have higher total alkali contents then the later phases, close to borderline between the subalkaline and the alkaline fields, while inclusion sample I-l belongs in the alkaline field. Molecular normalization diagram QAP (lower Figure 2.3.2.1.2) also document these outliers. The early phases la, Ha and He range in compositions from quartz-

92

monzonitic to borderline granitic/granodioritic and show overall lower modal quartz contents than later phases Hb, EUa and Dlb, which range from granodioritic to granitic in composition. Overall the different phases can be characterized as intermediate to felsic (quartz-monzonitic/granodioritic to granitic). Inclusion sample I-l plots in the silicaundersaturated field in the QAP diagram. In a peraluminous index vs. differentiation index diagram, all samples clearly belong into the I-type granitoid category after Chappell and White (1974).

93

Concepcion del Oro samples Ti02, MnO, P2O5 vs. Si02 plot 1.4

• SMCA-5

1.2

• SMCA-8 1.0

-l-SMCS-7

TiO:

-M

0.8

ASMCM-6 XSMCM-9 0.4

xSMCM-10 • SMCM-11

• . X.+

0.2

0.0 45

SIO, [wt. %J Concepcion del Oro samples AI2O3, FezOstotah MgO vs. Si02 plot 20.0 18.0 - -

• SMCA-5

16.0

• SMCA-8

14.0 -

-I.SMCS-7

12.0 -1-1 10.0

ASMCM-6 XSMCM-9 xSMCM-10

I MgO

4.0 —

• SMCM-11

2.0 -0.0 45

Concepcion del Oro samples CaO, Na20, K2O vs. Si02 plot 10.0

•SMCA-5 • SMCA-8 7.0 -6.0

+ SMCS-7

CaO

5.0

ASMCM-6

4.0

xSMCM-9

3.0 •—

xSMCM-10

2.0

CaO* 0.0

SiOj [wt. %]

Figure 2.3.2.1.1: Major element Harker diagrams for samples of the Concepcion del Oro intrusion.

94

Concepcion del Oro samples LOI vs. K20/Na20 plot Field of fresh igneous rocks modified from data from Wilson (1989) • SMCA-5



SMCA-8

+

SMCS-7

-

H

A

SMCM-6

X

SMCM-9

X

SMCM-10



SMCM-11 ± unaltered samples

-0.2

0.0

0.2

log KjOIUafi [wt. %] Concepci6n del Oro samples C/CNK, A/CNK vs. K/CNK plot

1 0.9

0.8 0.7

•SMCA-5 • SMCA.8 + SMCS-7

A/CNK 0.6

0.5

-1-1

SMCA-5 0.4

ASMCM-6 XSMCM-9 xSMCM-10 • SMCM-11

— i A/CNK

C/CNK

A

0.3 0.2

% 4

0.1

0 0.1

0.2

0.3

0.4

0.5

0.6

K/CNK [moles] Concepcidn del Oro samples A/CNK vs. SI02 plot

1.1

bT



e

•SMCA-5 • SMCA-8 + SMCS-7

peraluminous (S type)

-H

metaluminous (I type)

.§.0.9

ASMCM-6 XSMCM-9 XSMCM-10 • SMCM-11

z

u

^ 0.7

0.5

60

Si02 [wt. %] Figure 2.3.2.1.2: Alteration and norm-based discrimination diagrams for Concepcion del Oro.

95

Concepcion del Oro samples Si02 vs. K2O plot • SMCA-5

shoshonitic high K calc-alkaline



SMCA-8

+

SMCS-7 1-1

-

i3O

A

SMCM-6

X

SMCM-9

X

SMCM-10



SMCM-11

low K calc-alkaline

. ...

subalkaline

60

65

Le Maitre et al. (1989) Fields from Rickwood (1989)

SiO, [wt. %]

Concepcion del Oro samples Na20 + K2O vs. Si02 plot after Le Maitre et al. (1989), alkaline-subalkaline boundaries after Kuno (1966), Irvine & Baragar (1971) 15 n 14 •

Phono ite

13 12 -

• SMCA-5



SMCA-8

+

SMCS-7

T rachydacite

T ephriphonolite

11 -

-

10 •

Phonotephrit.j,^ Trachyandesite

1

!t^

T ephrite

o

O 6 ^ 543 2

1

I Basanite

T rachyandes rachy

basalt

A

SMCM-6

X

SMCM-9

X

SMCM-10



SMCM-11

Rhyolite Dacite Andesite basaltic Andesite



• Kuno (1966) -Irvine & Baragar (1971)

0-

SiO, [wt. %]

Concepcidn del Oro samples QAP diagram Le Maitre et al.(1989)after Streckeisen (1976)

•SMCA-5 • SMCA-8 + SMCS-7 -1-1

ASMCM-6 XSMCM-9 xSMCM-10 • SMCM-11

K[%mesonormatlve*]

Figure 2.3.2.1.3: Major element discrimination diagrams for Concepcion del Oro.

96

2.3.2.2 Providencia Due to widespread alteration, only two samples from the many collected during mapping were considered suitable for bulk geochemical analysis. The major and trace element characterization does therefore include for reference the samples from the main trend of the Concepcion del Oro intrusion, which is both spatially and temporally closely related (see previous section). Marker diagrams of Providencia samples show decreasing concentrations of the majority of major elements and increasing concentrations of CaO and NaaO with increasing Si02 between early phase I sample SMP-1 and late phase V sample SMPV-1. Rather strong are particularly the differences in AI2O3, Fe203 total and MgO, as well as CaO. Relative to the main trend in the Concepcion del Oro intrusion sample SMP-1 is generally close to that trend, while phase V sample SMPV-1 appears unrelated (see Figure 2.3.2.2.1). On the K2O vs. Na20 diagram early phase sample SMP-1 appears slightly enriched in K while late phase sample SMPV-1 is within the field of fresh rocks defined by Wilson (1989). On the log(K20/Na20) vs. LOI diagram however, both samples plot outside the field defined for fresh rocks suggesting that both samples are altered, particularly late phase sample SMPV-1. This is not immediately apparent either in hand sample or in the K2O vs. Na20 diagram, hi thin section, however, moderate sericitic alteration of feldspars and destruction of mafic minerals occuring near fractures with minor amounts of pyrite is recognizable in the latter sample.

97

A C/CNK vs. K/CNK plot of these two samples shows a significant difference between the two samples with lower molar K contents with concurring higher Ca contents. More extreme is the apparent difference on the A/CNK vs. K/CNK diagram with the late sample at significantly lower molar A1 as well as K contents (see middle Figure 2.3.2.2.2). On the TAS classification diagram, samples SMP-1 and SMPV-1 plot on the dacite field below the limit between the subalkaline and alkaline fields. Early phase sample SMP-1 belongs on the K2O vs. SiOi in the high K calc-alkaline field at the border to the shoshonitic field, while sample SMPV-1 appears to be much lower between the high and medium K calc-alkaline fields (see middle Figure 2.3.2.2.2). Considering that the latter sample is significantly altered, this classification should be viewed with some caution. The Providencia samples plot in the QAP diagram in widely different positions: at the border between the granodiorite and granite fields for the early phase I sample but within the silica-undersaturated portion of the alkali syenite field for the late phase V sample. The latter again likely reflects alteration rather than a genuine composition. On the peraluminous index vs. differentiation index plot (see bottom Figure 2.3.2.2.2), both samples plot in the metaluminous field, however late phase sample SMPV-1 has a significantly lower alumina content. Considering that aluminum is viewed as relatively immobile during alteration, this diagram suggests despite the alteration effects rather different magma sources for both igneous rocks.

98

2.3.2.3 Noche Buena The Noche Buena series of samples, while showing a general trend of decreasing concentrations in the majority of the major element oxides with increasing SiOi, this trend does not take into account the temporal position of the different phases, as derived from crosscutting relationships in the field. There is generally a closer affinity between the late phase IV samples SMNC-5, SMNC-6 and early phase I sample SMNN-1 than between any of these samples and phase n sample SMNC-4. A plot of K2O vs. Si02 however shows also a significant difference between the early phase I sample and phase rV samples: the later samples are closer to the general trend defined by the later samples of the Concepcion del Oro intrusion, but reversed considering their crosscutting order, while the earliest sample has both the lowest silica and highest potassium content, having no relation with the Concepcion del Oro trend (see Figure 2.3.2.2.1). Alteration diagrams of the Noche Buena samples show the early phase I sample SMNN-1 and the late phase FV sample SMNC-6 to be outside the field defined by Wilson (1989) for fresh volcanic rocks. The first one appears appreciably enriched in K2O relative to Na20 but has relative low LOI values, while the latter shows higher LOI values on the log(K20/Na20) vs. LOI diagram despite appearing to be within the field for fresh volcanic rocks on the K2O vs. Na20 diagram (see top Figure 2.3.2.2.2). Normalized chemical diagrams C/CNK vs. K/CNK and A/CNK vs. K/CNK describe A1 enrichment and Ca depletion with decreasing K contents between the early phase I sample and the later phase n and FV samples. The later phases, taken separately, describe

99

a trend of increasing Ca with decreasing K, while the earliest phase stands out at higher Ca and K contents. A general trend of increasing A1 contents with decreasing K contents does not take into account the temporal sequence, as derived from crosscutting relationships in the field. When taken into account, this trend is normal between the first and second phases but reverse between the second and the late phase samples. On an A/CNK vs. SiOa diagram the samples describe a similar pattern, with slight A1 increase with increasing SiOa between the early phase and the second phase of intrusion and a decrease between the latter and the late phase FV samples (see middle diagrams on Figure 2.3.2.2.2). K2O vs. Si02 and TAS classification diagrams suggest that the early intrusive phase at Noche Buena is of alkalic affinity, while the later phases are, according to the K2O vs. SiOz diagram, high K calc-alkaline in character. They plot in the TAS diagram below or at the alkaline-subalkaline boundary of Irvine & Baragar (1971) but, with the exception of late phase IV sample SMNC-6, above that of Kuno (1966). The QAP diagram places phase I sample SMNN-1 well below silica saturation outside the diagram. The later phases are quartz saturated, falling in the diorite or monzodiorite fields in the former, and in the monzonite, quartz-monzonite and quartz-monzodiorite fields on the latter (see lower Figure 2.3.2.2.2).

100

2.3.2.4 Santa Rosa The Santa Rosa samples were taken respectively from the margin and center of the dike close to Puerto Blanco, the margin of the system. However the samples are closely related to rocks in the center of the system and, as the central part is too strongly altered, they are considered to be unaltered samples representative of the main body. Other than a difference in color in the matrix, which is darker in the rim sample, no clear evidence of internal contact between both phases was observed. The Santa Rosa samples show a trend of decreasing concentrations of the majority of major element oxides with the exception of Na20, K2O and P2O5 that increase moderately with increasing SiOi. from core to rim of the dike (see Figure 2.3.2.2.1). The K2O vs. Na20 diagram of the samples show both samples within the field of fresh rocks, as defined by Wilson (1989). Sample SMRN-2, corresponding to the margin of the dike, has however a higher LOI value on the log(K20/Na20) vs. LOI diagram, suggesting weak to moderate alteration. This has not been observed in hand sample or petrographically. C/CNK vs. K/CNK and A/CNK vs. K/CNK diagrams for the samples describe a noticeable decrease in Ca but only a very slight decrease or close to constant amount of A1 with increasing K content. The latter finds its parallel in the A/CNK vs. Si02 diagram where increasing K content is apparent with increasing silica from the rim sample to the core of the dike (see Figure 2.3.2.2.2). Total alkali vs. silica and K2O vs. Si02 classification diagrams suggest that the Santa

101

Rosa samples are high K calc-alkaline trachyandesites to trachydacites, transitional between the subalkaline and alkaline fields. The QAP classification diagram reflects an overall intermediate chemistry (quartz-monzonitic to borderline granitic, see bottom Figure 2.3.2.2.2).

102

Concepcion del Oro area intrusive samples Ti02, IVInO, P2O5 vs. Si02 plot

^ ss 1.0

TiOii A

i

• Concepci6n de! Oro

"

• Providencia

A •

AP2O5 A"

—«.

Noche Buena Santa Rosa • Concepcibn del Oro main trpnd

0.2

0.0

55

60

65

SiO, [wt. %]

Concepcion del Oro area intrusive samples AI2O3, Fe203 total, MgO vs. Si02 plot 20 10 16

AbO^.. ( F

• Concepcl6n del

O 12



Oro Providencia

A

Noche Buena

—I

10

6' £ 8 o" 6 < 4

FejO,! ^A i..

• ...®.

Santa Rosa - Concepci6n del Oro main trend

2 0

SiO, [wt. %]

Concepcion del Oro area intrusive samples CaO, Na20, K2O vs. Si02 plot

• Concepci6n del

• A

Na,0



Oro Providencia

A

Noche Buena



• ^NajO

...®.

Santa Rosa • Concepci6n del Oro main trend

CaO SiOj [wt.%]

Figure 2.3.2.2.1; Major element Harker diagrams for Providencia, Noche Buena and Santa Rosa igneous center samples.

103

Concepci6n del Oro area intrusive samples LOI vs. KjO/NaaO plot Field of fresh igneous rocks modified from data from Wilson (1989)

• Concepcion

4 A



del Oro Pro\^dencia

A

Noche Buena



± unaltered samples

AA -0.2

Santa Rosa

X.^

0.0

0.2

0.4

log KiOlfiajOlwi. %] Concepci6n del Oro area intrusive samples C/CNK, A/CNK vs. K/CNK plot

• Concepcidn del Oro

• Pro\«dencia A/CNK



A SMPV-l t A/CNK

A

Noche Buena Santa Rosa • Concepcidn del Oro main trend

0'" ^

aCNK 0.4

0.5

0.6

0.7

K/CNK [moles]

Concepcidn del Oro area intrusive samples A/CNK vs. Si02 plot

• Concepcidn del peraluminous (S type); metaluminous (I type)



Oro ProMdencIa

A

Noche Buena



Santa Rosa

. . -O- • Concepcibn del Oro main trend

A •-A

• 60

SI02 [wt. %] Figure 2.3.2.2.2: Alteration, norm-based discrimination diagrams for Providencia, Noche Buena and Santa Rosa.

104

Concepcion del Oro area intrusive samples Si02 vs. KjO plot after Le Maltre et al. (1989) with modifications after Riclcwood (1989)

• Concepcidn del Oro

shoshonitic

• ProMdencia

high K calc-alkaline

4

A

is i

A

•>'"4



• tow K calc-alkaline

Noche Buena Santa Rosa Le Maitre et al. {1989) Fields from Rick wood (1989)

2

r " . ' "

subalkaline

Si02 [wt. %]

Concepcidn del Oro area intrusive samples total alkali vs. Si02 plot after Le Maitre et al. (1989), alkaline-subalkaline boundaries after Irvine & Baragar (1971) 15 14 13 12

Phonolite



V ^ephriphonolite > \

11

Trachydacite

J 10 *vPhonotephrite

rachyandesiteX



Concepcion del Oro Providencia

A

Noche Buena

^^basalticv Tephrite Basanite

#

Santa Rosa

^^rachys.



\ Dacite basalt ic Basalt

Irvine i 0971) •Kuno(1966)

Rhyolite \

Andesite

Andesite

basalt

55

60

SIO, |wt. %1

Concepcidn del Oro area intrusive samples QAP diagram Le Maitre et al.(1989^ after Streckeisen (1976)



Concepcidn dei



Oro ProMdencia

A

Noche Buena



Santa Rosa

- . -o- • Concepcidn del Oro main trend

K1% mesonormativQ*}

Figure 2.3.2.2.3: Discrimination diagrams for Providencia, Noche Buena and Santa Rosa.

105 2.3.3 Trace and rare earth element geochemistry 2.3.3.1 Concepcion del Oro An extended spidergram of trace elements normalized to chondritic values, after Thompson (1982), underscores the general subduction-related environment of magma genesis with relative depletions in incompatible elements K, Nb, P and Ti. These depletions are expressed as a ratio of the actual concentration of the trace element over the value interpolated from the concentrations of the immediately adjacent elements on Table 2.3.3.1.1. Sample I-l, however, despite an incomplete pattern, appears to have no such depletion, as can be seen from middle left diagram on Figure 2.3.3.1.1. Also of interest are specific depletions in Sr relative to the, in the diagram, adjacent elements Ce and Nd in the late aplite (phase EHb) SMCM-11 and in early phase He sample SMCS-7; and by comparison slight enrichment in Sr in phase la sample SMCA-5 and in late phase nia sample SMCM-10.

On compatible versus incompatible element plots Nb vs. Y and Rb vs. (Y+Nb), samples plot very close to each other and indicate moderate contents in both compatible and incompatible elements which, by comparison with Pearce et al. (1984), suggest a geotectonic environment akin to a volcanic arc or a collisional orogen (see upper part of Figure 2.3.3.1.1). Additionally, inclusion sample I-l does show enrichment in both compatible and incompatible elements on a Rb vs. Yb+Ta diagram. On a (Rb/30)-Hf(Ta*3) triangular plot, however, the early phase la sample SMCA-5 and late phase EUa SMCM-9 point to higher degrees of enrichment in compatible elements, plotting in the

106 within-plate granitoid field, while early phase He sample SMCS-7 indicates less enrichment in the compatible elements and more in the incompatible elements, plotting in the late to post-collision granitoids. The main trend of samples plot in the volcanic arc granite field but show a wide range in incompatible element contents. Generally samples belonging to the Concepcion del Oro intrusion have relatively high REE abundances and moderate light to heavy REE ratios (average ZREE=360.7, La/Yb=10.6). Europium anomalies are generally small, averaging Eu/Eu*=0.86, with the possible exception of the early phase la sample, for which a much lower Eu anomaly was estimated. Table 2.3.3.1.1 and Figure 2.3.3.1.1 summarize the relevant trace and REE pattern characteristica for the intrusion.

Table 2.3.3.1.1: Summary trace and REE data for samples from the Concepcion del Oro intrusion. Sample SMCA-5 SMCA-8 SMCM-6 SMCS-7 SMCM-9 SMCM-10 SMCM-11 Main trend range Average

'base la Ha nb He

Nb/Nbw* P/PN* K/KN* 1.058 X 10"^ 0.174 0.012 1.228 X 10"^ NA 0.012 1.087 X 10"^ 0.165 0.011 1.536 X 10"^ 0.258 0.008 1.013 X 10"^ 0.163 0.011 nia 0.013 nia 1.275 X 10-^ 0.165 mb 1.468 X 10-^ 0.117 0.001 1.013 X W 0.163 0.011 1.275 X 10-^ 0.165 0.013 1.151 X 10"^ 0.164 0.012

Ti/TiN* NA NA 2.772 X 10"^ 1.890 X 10"^ 2.943 X 10'^ NA NA 2.773 X 10"^ 2.943 X 10-^ 2.858 X 10"^

Sr/SrN* 0.931 NA 0.827 0.434 0.879 1.103 0.448 0.827 1.103 0.936

SREEN

261.0 319.5 459.9 443.5 397.0 205.3 136.7 205.3' 459.9' 345.4'

La/YbN La/SmN Gd/YbN 2.4 2.8 8.1 3.3 1.7 7.9 3.0 9.8 2.2 4.0 1.7 10.3 3.3 1.9 9.1 2.6 2.0 6.4 8.4 1.7 22.8 2.6 1.8 6.4 3.0 9.8 2.2 3.0 1.5 8.4

EU/EUN*

0.43 0.92 0.87 0.73 0.85 0.91 NA 0.84' 0.92' 0.88'

Trace and REE data have been normalized against chondritic values after Taylor & McLennan (1985). Values in italic for Eu/ Eun * indicate that a reconstructed REE pattern was used to derive them. Range and average values of REEn and Eu/Eun for the main trend taking into account reconstructed REE patterns for samples with incomplete patterns are as follows: EREEn: 283.1-469.3 and 367.8; Eu/Eun : 0.83-0.91 and 0.87.

' Eu/Eu* has been estimated in samples where a complete REE spectrum was not obtained. The method involves reconstructing the REE pattern using forward extrapolation from Nd and Sm on the one hand, backward extrapolation from Yb and Lu on the other hand and averaging between both trends.

108

Concepci6n del Oro Nb vs. Y diagram, after Pearce et al. (1984)

• SMCA-5

w.p.u

• SMCA-8 + SMCS-7 -1 - 1

ASMCM-6 XSMCM-9 xSMCM-10 • SMCM-11

V.A.G O.R.G Syn.Col.G.

Yrppml

Concepcibn del Oro Y+Nb vs. Rb diagram, after Pearce et al. (1984) Syn.Col.G. • SMCA-5 • SMCA-8 W.P.G -l-SMCS-7 -I-l

ASMCM-6 XSMCM-9 XSMCM-10 V.A.G.

• SMCM-11

O.R.G.

100

Y+fi} [ppm]

Concepcidn del Oro samples Hf - Rb/30 • Ta*3 diagram after Harriset al.(1986)

•SMCA-S SMCA-8 -j-SMCS-7 Svm-collisiona Granites

Rb/30 [ppm]

ASMCM-6 XSMCM-9

Late anthfwjst collisional

XSMCM-10 • SMCM-11

Granites VA.G

W.P.G Hf[ppml

Figure 2.3.3.1.1: Selected trace element tectonic discrimination diagrams for samples of the Concepcion del Oro intrusion

109

Concepcion del Oro Trace Element spidergram, normalized after Thompson (1982), U after Sun (1980) 0000

-SMCA-5 -SMCA-8 -SMCS-7 -1-1

Ih

SMCM-6

U

-SMCM-9 -SMCM-10 -SMCM-11

0.001

0.0001

Concepci6n del Oro REE spidergram, normalized after Taylor& McLennan (1985)

-SMCA-5 -SMCA-8 -SMCS-7

> s

SMCM-6

?I 1° N C

-SMCM-9

i -a

-SMCM-10

o u c c

-SMCM-11 primiti>« mantle

LaN

CeN

PrN

NdN

SmN

EuN

GdN

TbN

DyN

HoN

ErN

TmN

YbN

LuN

ements

Concepcldn del Oro Th/U diagram, after Bouse et al. (1994)

• SMCA-5



SMCA-8

+

SMCS-7

-

1-1

— 30

A

SMCM-6

k 25

X

SMCM-9

H 20

X

SMCM-10



SMCM-11

E

15

4:1 ratio

10

2.1 ratio

5

1:1 ratio

0

Ulppm]

Figure 2.3.3.1.2: Selected trace and rare earth element diagrams for samples of the Concepcion del Oro intrusion

2.3.3.2 Providencia On Nb vs. Y and Rb vs. Y+Nb plots, samples of this intrusive center indicate moderate degrees of enrichment in both compatible and incompatible elements, similar to the Concepcion del Oro intrusion (see Figure 2.3.3.2.2). However with Ta values below detection limit, Ta vs. Yb and Rb vs. Yb+Ta as well as ternary (Rb/30)-Hf-(Ta*3) and (Rb/10)-Hf-(Ta*3) diagrams can not be used. An extended spidergram, after Thompson (1982), shows relative depletions in Ba with respect to Rb and Th, and Nb with respect to La; and strong depletions in P and Ti as well as K in both samples, although these are more pronounced in late sample SMPV-1 (see upper Figure 2.3.3.2.1). Both samples show also relative depletion in Sr relative to Ce and Nd. Finally, late phase V sample SMPV-1 shows lower values of Th and Nb than phase I. Main intrusive phase SMP-1 appears to be a relatively enriched in rare earth elements with ZREE=455.3, and La/Yb, La/Sm and Gd/Yb ratios of 10.3, 3.8 and 1.7 respectively. It shows a moderate negative Eu anomaly (Eu/Eu*=0.77) and a slight depletion in the intermediate REE. Late phase sample SMPV-1 appears to be less enriched (ZREE=238.04, and La/Yb, La/Sm and Gd/Yb ratios of 7.2, 3.1 and 1.8 respectively), does possess a negative Eu anomaly slightly larger than that of phase I (Eu/Eu*=0.78), and a depletion in the intermediate REE smaller than the earlier phase (see Figure 2.3.3.2.1). A Th vs. U diagram shows ratio values for both samples around 3, which departs

from a ratio of about 4 characteristic for average continental crust and shows affinities with island arcs (Bouse, 1995). These values have to be viewed again with some caution due to alteration issues in both samples, but particularly with the late phase sample.

2.3.3.3 Noche Buena On Nb vs. Y and Rb vs. Y+Nb plots samples of this intrusive center show moderate degrees of enrichment in both compatible and incompatible elements (see Figure 2.3.3.2.2). In the case of early phase I sample SMNN-1, enrichment in incompatible element Rb relative to more compatible elements Y and Nb is indicated. Unfortunately, since Ta is below detection limit for all samples, other discrimination diagrams cannot be used. A chondrite-normalized extended spidergram of trace elements again shows relative depletions in Ba with respect to adjacent elements Rb and Th, K and Nb with respect to La, and Ti. A significant depletion in P occurs in all samples similar to the other, previously discussed intrusive complexes of Concepcion del Oro and Providencia. The first phase of intrusion, sample SMNN-1, displays lower values for Th and Nb compared with later phases, but not for P. Also of interest is a slight Sr enrichment relative to Ce and Nd in all samples (see middle Figure 2.3.3.2.1). Samples belonging to the Noche Buena intrusion have relatively high REE abundances and moderate light to heavy REE ratios (average ZREE=374.20, La/Yb=7.7). Intrinsically, early phase I sample SMNN-1 appears to have the highest REE concentrations as well as the second lowest fractionation factors for the group of samples; while phase n sample SMNC-4, despite an incomplete REE pattern, appears to have the lowest REE concentrations and the second highest fractionation factors (SREE=234.1 is incomplete; a reconstructed REE pattern suggests ZREE~300). Late phase IV samples

113

show different degrees of enrichment in REE and fractionation factors, suggesting that as late phases they are rather heterogeneous, although overall relatively enriched. Europium anomalies for the Noche Buena intrusion are rather small, averaging Eu/Eu*=0.94. A lower Eu anomaly was estimated for late phase IV sample SMNC-5 (Eu/Eu*=0.64) on the base of a reconstructed pattern. Table 2.3.3.2.1 and Figure 2.3.3.2.1 summarize the relevant REE pattern characteristics for the intrusion. Th/U ratios in the Noche Buena intrusion show an increase from below average continental crust values in the early phase I sample SMNN-1, (Th/U~3) toward an average continental crust value of 4 in second phase sample SMNC-4, decreasing in the later phase IV samples toward a value of 2 (SMNC-5 Th/U~2.8, SMNC-6 Th/U~2.3), similar to that of island arcs (see bottom Figure 2.3.3.2.2).

2.3.3.4 Santa Rosa OnNb vs. Y and Rb vs. Y+Nb plots samples of this igneous center indicate moderate degrees of enrichment in both compatible and incompatible elements, comparable to samples in nearby districts. A chondrite-normalized extended spidergram of trace elements shows relative depletions in Ba with respect to adjacent elements Rb and Th, as well as Nb with respect to La. Significant depletions in P, K and specially Ti of comparable degree to samples of the intrusive centers discussed earlier occur in these samples as well. Santa Rosa samples appear to be relatively enriched, fractionated rocks. Dike center sample SMRN-1 also shows a weak but noticeable negative Eu anomaly (Eu/Eu*=0.87), a noticeable depletion of the intermediate REE relative to Tm giving the pattern a slight but recognizable concave profile, HREE concentrations slightly above 10 relative to chondritic values, and a slight depletion in Yb relative to both Tm and Lu. Sample SMRN-2 REE pattern is incomplete but appears to be relatively similar to the dike core sample (see Figure 2.3.3.2.1). Th/U ratios for both Santa Rosa samples show an increase from a value around 2 for border sample SMRN-2 (Th/U=2.4) to a value around 4 for sample SMRN-1 (Th/U~4). The change in ratio is solely due to relative U enrichment since Th values are virtually the same for both samples suggesting, along with other major element indications, that the dike rim may be a differentiate. Absence of recognizable boundaries between rim and core makes, as previously mentioned, a significant change in the source region unlikely.

Table 2.3.3.2.1: Summary trace and REE data for samples from the Providencia, Noche Buena and Santa Rosa igneous centers. Sample SMP-1 SMPV-1 SMNN-1 SMNC-4 SMNC-5 SMNC-6 SMRN-1 SMRN-2

'base I V I n rv IV I I

K/Kn* 0.710 X 10"^ 1.241 X 10"^ 2.786 X 10"^ 1.264 X 10"^ 1.484 X 10'^ 0.793 X IQ-^ 1.006 X IQ-^ 0.826 X 10"^

Nb/NbN* P/PN* 0.094 0.009 0.122 0.007 0.130 0.020 0.191 0.014 0.216 0.018 0.144 0.013 0.157 0.013 0.125 0.014

TI/TIN* 2.912 X 10"^ 2.737 X 10"^ 4.517 X 10"^ NA NA 3.689 X 10"^ 3.279 X 10-^ NA

Sr/SrN* 0.574 0.613 1.395 1.158 1.253 1.056 1.067 0.972

SREEN La/YbN La/Smw 455.3 3.8 10.3 238.0 3.1 7.2 426.9 2.0 5.8 234.1' 2.7 7.9 220.9' 5.7 1.8 396.3 11.4 2.7 367.2 7.4 3.0 339.6' 20.8 4.1

Gd/YbN EU/EUN* 1.7 0.77 1.8 0.78 2.2 0.94 1.6 0.87 0.64 1.8 2.7 0.91 1.7 0.87 2.4 0.87

Trace and REE data have been normalized against chondritic values after Taylor & McLennan (1985). Values in italic for EU/EUN* or GdA^bn indicate that a reconstructed REE pattern was used to derive them. For samples SMNC-4 and SMNC-5, ZREB values of ~300 and -366 respectively were also estimated based on a reconstructed REE pattern.

^ Eu/Eu* has been estimated in samples where a complete REE spectrum was not obtained. The method involves reconstructing the REE pattern using forward extrapolation from Nd and Sm on the one hand, backward extrapolation from Yb and Lu on the other hand and averaging between both trends.

116

Concepcidn del Oro area igneous samples Nb vs. Ydiagram, after Pearce et al. (1984)

• Concepcibn del

W.P.G



Oro Pro\^dencia

A

Noche Buena



Santa Rosa • Concepci6n del Oro main trend

••

V.A.G 0,R.G Syn.Col.G

Y[ppm]

Concepcidn del Oro area igneous samples Y+Nb vs. Rb diagram, after Pearce et al. (1984) Syn.Col.G.

Concepcion del Oro

• •

W.P.G.

• Providencia Noche Buena

A



Santa Rosa • Concepcion del Oro main trend

VA.G.

O.R.G.

100 Y+Nb [ppm]

Concepcidn del Oro area igneous samples Hf - Rb/30 - Ta*3 diagram after Harris et al. (1986) PbOO

•Concepci6n del Oro B SVn-coUisiona Granites Rb/30 [ppm]

• Providencia ANoche Buena • Santa Rosa

Late ano-ftQst coUisional Granites V.A.G W.P.G Hf [ppm]

Figure 2.3.3.2.1: Trace element tectonic discrimination diagrams for igneous samples in the Concepcion del Oro area.

117

Providencia Trace Eiement spidergram, normalized after Thompson (1982), U after Sun (1980) 10000

SMP-1 Rb

Ba

TTi

U iK# Ms

Ta

La

Ce

Sr

Nd

I~SMPV-1

0.001 0.0001

Trace Bements

Noche Buena Trace Eiement spidergram, normalized after Thompson (1982), U after Sun (1980)

-SMNN-1 -SMNC-4 SMNC.5 -SMNC-6

0.0001

Trace Bements

Santa Rosa Trace Element spidergram, normalized after Thompson (1982), U after Sun (1980) 10000 1000 • -

100 ---

SMRN-1 Rb 0.1 • —

0.01

0.001 0.0001 Trace Bements

Figure 2.3.3.2.2: Trace element spidergrams for Providencia, Noche Buena and Santa Rosa igneous samples.

118

Providencia REE spidergram compared to Concepcion del Oro main trend normalized after Taylor & McLennan (1985)

-SMP-1 -SMPV-1 Concepcidn del Oro main trend primitive mantle

LaN

CeN

PrN

NdN

SmN

EuN

GdN

TbN

DyN

HoN

ErN

TmN

YbN

LuN

RSBements

Noche Buena REE spidergram compared to Concepcion del Oro main trend normalized after Taylor & McLennan (1985)

SMNN-1 -•—SMNC-4 SMNC-5 SMNC-6

:"

LaN

CeN

PrN

NdN

SmN

EuN

GdN

TbN

DyN

HoN

ErN

TmN

YbN

- Concepcidn del Oro main trend primitive mantle

LuN

RSBements

Santa Rosa REE spidergram compared to Concepcion del Oro main trend normalized after Taylor & McLennan (1985)

-SMRN-1 -SMRN-2 Concepcion del Oro main trend primitive mantle

LaN

CeN

PrN

NdN

SmN

EuN

GdN

TbN

DyN

HoN

ErN

TmN

YbN

LuN

RSBements

Figure 2.3.3.2.3: Rare earth element diagrams for Providencia, Noche Buena and Santa Rosa igneous samples together with a comparative range of samples from the Concepcion del Oro intrusion.

119

Concepci6n del Oro area igneous samples Th/U diagram, after Bouse et al. (1994)

45

^ •

Concepci6n del Oro Providencia

A

Noche Buena



Santa Rosa

30 a 25

.. -o • • • Concepcl6n del Oro main trend 4;1 ratio 2:1 ratio 1:1 ratio

U[ppml

Figure 2.3.3.2.4: Comparative discrimination ThAJ diagram for the different igneous centers in the Concepcion del Oro area.

120 2.3.4 Discussion Broadly speaking it is suggested that the samples from Concepcion del Oro intrusion define two groups of chemically related samples: a first group composed of samples belonging to phases lib, ma and IHb (samples SMCM-6, SMCM-9, SMCM-10 and SMCM-11), and a second group of outliers composed of samples belonging to phases la. Ha and He (samples SMCA-5, SMCA-8 and SMCS-7) and inclusion sample I-l. The relationship between the samples belonging to the earlier pulses is rather loose relative to the later ones, which appear to constitute a more coherent group, defined by a trend of decreasing concentrations of Ti02, Fe203 total, MgO, CaO and P2O5 on the one hand, and increasing K2O with increasing Si02. By comparison with the other igneous centers, however, both groups however are relatively close to the trend defined by the later phases. Against this group, samples with the lowest silica contents in all igneous centers: inclusion sample I-l at Concepcion del Oro, phase I sample SMNN-1 and phase IV samples SMNC-5 and SMNC-6 at Noche Buena; set themselves apart at higher values in Ti02, Fe203 total, MgO, CaO and P2O5. Within this group, the latter three samples have low K2O while phase I sample from Noche Buena has high K2O values. The subdivision into two groups of samples is further suggested by various normalized chemical plots and classification diagrams. In particular, on the TAS classification diagram, the group of silica-poor samples are at the limit or above the subalkaline/alkaline boundary of Irvine and Baragar (1971) while the more silica-rich samples can be divided again in the later phase samples, which fall in the subalkaline

121 field of Kuno (1966), while the earlier phase samples are above it but below the subalkaline/alkaline boundary of Irvine and Baragar (1971). Based on field observation and mineralogical inference also, these groups can be correlated across intrusions and may represent several magmatic pulses with slightly differing chemistries (Table 2.3.4.1). Early phase sample SMNN-1 from Noche Buena and inclusion sample I-l from Concepcion del Oro are Al-poor and appear the most mafic compositions, possibly representing a less differentiated, earlier phase. Early phases la. Ha and He at Concepcion del Oro describe a trend of increasing alkali contents with increasing silica, paralleled by Harker diagrams and normalized chemical diagrams. Phase lib sample SMCM-6, represents a less evolved composition than the previous phases suggesting the introduction of a new pulse of magma. There appears to be no clear equivalent in the other igneous centers of the early phases at Concepcion del Oro with the possible exception of phase n sample SMNC-4 at Noche Buena. However the trend defined by the later phases at Concepcion del Oro corresponds to the main early phase I at Providencia, likely also phase n at Noche Buena, and the samples of the Santa Rosa igneous centers. Finally, phase FV samples at Noche Buena are again relatively Al-poor and more mafic than the main trend described previously and indicate a different, late magmatic phase. Late phase V sample SMPV-1 from Providencia may also belong to that late magmatic pulse but the sample is significantly altered. The extended trace element spidergram after Thompson (1982) shows general similarities with subduction-related environment of magma genesis for all igneous samples in the Concepcion del Oro area, with depletions in incompatible elements K, Nb,

122 P and Ti. In the later sense, slight depletion in Sr relative to the, in the spidergram adjacent elements Ce and Nd, is present in the majority of samples in the Concepcion del Oro area but most noticeable in a number of samples: phases He and IHb in the Concepcion del Oro and both samples at Providencia suggesting these samples are more fractionated than the rest. Li contrast all samples in the Noche Buena intrusion are enriched, most notably phase I sample SMNN-1 and phase FV sample SMNC-5. Comparably, compatible/incompatible trace element discrimination diagrams indicate generally moderate contents in both compatible and incompatible elements, which by comparison with samples from different geotectonic environments analyzed by Pearce et al. (1984) suggest a geotectonic environment akin to a volcanic arc or a collisional orogen. Sample I-l, however, despite an incomplete spidergram pattern, is enriched or not depleted, as indicated by elements K and Ti. This is paralleled by its position on the Rb vs. Yb+Ta diagram of Pearce et al. (1984) in the field of within-plate granitoids. Two other samples of the Concepcion del Oro intrusion, phase Ha sample SMCA-8 and late phase

nib sample SMCM-11, and phase I sample SMNN-1 from Noche Buena show

enrichment in Rb relative to Y+Nb. In the first two cases it is suggested that differentiation is the underlying factor, while in the case of the Noche Buena sample, its high contents in K allows for significant increase in Rb substitution. A (Rb/30)-Hf-(Ta*3) triangular plot also suggests a volcanic arc tectonic environment for te majority of samples in the Concepcion del Oro area although there is a wide scatter in Rb values between and within different igneous centers. Only early phases la and He samples SMCA-5 and SMCS-7, and late phase Ilia sample SMCM-9 at Concepcion del

123 Oro plot in the within plate or late to post-collisional granitoid fields, suggesting relatively higher degrees of enrichment in HFS element Ta relative to Hf or LIL element Rb. REE abundances are relatively high for all samples in the area (between around 10 times chondrite values for the heavy REE and around 50 to 100 times chondrite values for the light REE). The main trend constituted by the later phases of the Concepcion del Oro intrusion averages around 10 times chondrite values for the heavy REE and around 50 to 80 times chondrite values for the light REE, with EREE ranging between around 280 and 470 and average EREE~368. Most samples in the area are within or close to these values, with the exception of phase V sample SMPV-1 from Providencia, phase I and phase IV samples SMNN-1 and SMNC-6 from the Noche Buena intrusion and sample SMRN-2 from the margin of the dike near Santa Rosa. All samples in the Concepcion del Oro area show a characteristic concave pattern in the intermediate REE that suggests fractionation of amphibole in the source of the different magmas.

124 Table 2.3.4: Summary REE data for igneous samples from the Concepcion del Oro, Providencia, Noche Buena and Santa Rosa igneous centers; range and average values for the main trend in the Concepcion del Oro intrusion. Sample SMCA-5 SMCA-8 SMCM-6 SMCS-7 SMCM-9 SMCM-10 SMCM-11 Main trend range Average

'hase la Ha nb He nia nia

nib

SREE N

261.0 319.5 459.9 443.5 397.0 205.3 136.7 205.3-459.9

La/YbN 8.1 7.9 9.8 10.3 9.1 6.4 22.8 6.4-9.8

La/SmN 2.8 3.3 3.0 4.0 3.3 2.6 8.4 2.6-3.0

283.1-469.3 345.4-(367.8) 8.4

3.0

SMP-1 SMPV-1

1 V

455.3 238.0

10.3 7.2

3.8 3.1

SMNN-1 SMNC-4 SMNC-5 SMNC-6 SMRN-1 SMRN-2

I

426.9

n

234.l-(300.8) 220.9-(365.7)

5.8 7.9 5.7 11.4 7.4 20.8

2.0 2.7 1.8 2.7

IV IV I I

396.3 367.2 339.6'

3.0 4.1

Gd/Ybw

E U/ E UN*'

2.4

0.43

1.7 2.2 1.7 1.9

0.92 0.87 0.73 0.85

2.0 1.7

0.91

1.8-2.2 1.5 1.7 1.8

NA 0.84-0.92

0.83-0.91 0.88-(0.87) 0.77 0.78

2.2

0.94

1.6 1.8

0.87 0.64

2.7

0.91

1.7

0.87

2.4

0.87

Values in italic for SREE N, Gd/Ybn and E U/E UN* indicate that a reconstructed REE pattern was used to derive them.

Europium anomalies are negative for all samples in the Concepcion del Oro area, suggesting fractionation of plagioclase, in addition to amphibole, in the source of the different magmas in the area. However, against an average from the later phases from the Concepcion del Oro between 0.88 and 0.87, phase Ha sample SMCA-8 and possibly phase

nia SMCM-10 from Concepcion del Oro, and phases I and IV samples SMNN-1

and SMNC-6 from Noche Buena, show smaller negative anomalies, indicate these

Eu/Eu* has been estimated in samples with incomplete REE patterns (Tables 2.2.3.1 and 2 footnotes).

125 samples to be less fractionated and suggesting a new pulse of magma. In contrast, phase la sample SMCA-5 from Concepcion del Oro and phase IV sample SMNC-5 from Noche Buena show much stronger negative anomalies than the majority of the samples in the area, estimated to be around 0.43 for the former and 0.64 for the latter. This suggests that source for the early magma at the Concepcion del Oro intrusion is a differentiated magma, while sources for the late phase IV at Noche Buena are, on the one hand an undifferentiated, mafic magma, and on the other hand a mafic but more differentiated magma. In her work on Pb-isotopic crustal signatures and metallogenic characteristic of crustal provinces in Arizona, Bouse (1995) recognized that the Central Arizona crustal province, underlain by an early Proterozoic island arc and ocean floor complex (Central Volcanic Belt of Anderson, 1989) has a Th/U ratio of about 2; while the Southeastern Arizona

crustal

province,

underlain

by

distal

continental

margin

metasedimentary/metavolcanic sequences (Southeastern Schist Belt of Anderson, 1989) has a Th/U ratio of about 4; and the Mojave crustal province, underlain by older, polymetamorphic continental crust (late Archean gneissic basement of the Mojave Province) with Th/U ratios higher than 4. On the basis of these crustal assemblages, a parallel was drawn by that same author between islands arcs, oceanic crust and low Th/U ratios on the one hand; average, non-recycled continental crust and Th/U ratios around 4; and enriched/recycled continental crust and high Th/U ratios. In the absence of lead isotopic data for the assessment of potential magma sources some attention is given to Th vs. U for the meaning of this element pair as indicator of affinity of possible crustal

126 sources and evolution, as both elements are concentrated in the liquid phase during partial melting and fractional crystallization of magma, and incorporated into the more silicarich products (Faure, 1977, Bouse, 1995). The majority of samples in the Concepcion del Oro intrusion have Th/U ratios close to 4. There are however a few departures towards lower, as well as higher values: phase IHa sample SMCM-9 and phase mb sample SMCM-11. In the first case Th/U=3, while in the latter case the ratio is close to 10. This may indicate on the one hand, lack of enrichment in Th relative to U corresponding either to an undifferentiated magma or a depleted source for this late phase and enrichment due to differentiation in the late phase lEb, which corresponds to an aplite. Average continental crust composition of around Th/U=4 for the earlier phases, occurs also in phase n sample SMNC-4 from Noche Buena. Samples from the Providencia, the early and late phases of the Noche Buena intrusion and the Santa Rosa igneous center, however, have Th/U ratios between 2 and 3, closer to values associated with an island arc.

127 2.4 Stable and radiogenic isotope geochemistry of igneous rocks in the Concepcion del Oro region. Samples from the Concepcion del Oro intrusion selected for isotopic analysis include intrusive phase Ha sample SMCA-8, porphyritic phase He sample SMCS-7 corresponding to the early group of phases; while porphyritic phase Hb sample SMCM-6, and intrusive phase ma sample SMCM-9 correspond to the main trend of later phases. Both of the Providencia samples considered for whole rock analysis, early phase I sample SMP-1 and late phase V sample SMPV-1, were selected due to the absence of unaltered samples of other intervening phases. Whole rock analysis samples SMNN-1 and SMNC-6 from Noche Buena, corresponding respectively to phase I and phase IV were analyzed. Finally sample SMRN-1 corresponding to the center of the Puerto Blanco dike, northwest from Santa Rosa, was analyzed as the closest equivalent of that igneous body. Trace element contents of the samples as well as measured isotope ratios for the samples within the Concepcion del Oro area are given in Table 2.4. Harker diagrams compare ICP results of the specific samples selected for isotopic analysis with the NAA results from trace element geochemistry on the same samples where possible. Correlation diagrams show the NAA values against isotope values and display for comparison the Sr isotopic values for Bulk Silicate Earth (BSE) and Nd values for Chondrite Uniform Reservoir (ChUR). Because no geochronological data exists for the Noche Buena intrusion, ^^Sr/^^Sn was calculated to an inferred intrusion age of 40Ma by inference from Roegge et al. (1974); as well as by analogy in Puchner & Holland (1966) to Ohmoto et al. (1966). However, in the

128 case of the Santa Rosa system, two values for ^^Sr/^^Sri were calculated: the first one at 40Ma parallels the other igneous centers in the Concepcion del Oro region; the second one assumes a younger age of around 34Ma. This younger age is based on an indication in Ohmoto et al. (1966) that the K-Ar ages on late hydrothermal muscovite at Salaverna appear significantly younger than the alleged mineralizing intrusion (33.8Ma and 34.5Ma on muscovite in ore) and the existence of a rhyolite plug in the vicinity of Salaverna (Triplett, 1952; Mapes Vazquez et al., 1964), as well as what are documented as sills of younger age than the main intrusion in the immediate vicinity of the Salaverna orebody (Mapes Vazquez et al., 1964). A few selected quartz and plagioclase mineral separates were analyzed for their oxygen isotopic composition. The sample set includes again intrusive phase Ha sample SMCA-8, the porphyritic phase lib sample SMCM-6, and the intrusive phase lUa sample SMCM-9 from the Concepcion del Oro pluton, sample SMNM-2 from the Amarillas area of the Noche Buena intrusion, and sample SMRN-1 from the Santa Rosa igneous center. Only in the samples of the Concepcion del Oro and Santa Rosa centers quartz-plagioclase pairs could be separated with sufficient guarantees that both minerals were relatively unaltered. The opposite is particulary true, however, of samples in the Providencia and Noche Buena districts.

Table 2.4; Rb, Sr, Sm and Nd trace element contents and measured isotope ratios for samples from the Concepcion del Oro area. Age

Rb

[ppm]^

SMCA-8 SMCS-7 SMCM-6 SMCM-9

40 40 40 40

SMP-1 40 SMPV-1 40

189.0 83.32

98.0 118.1 123.83 106.63

147

143

Sm

'Rbr^Sr ''Srr^Sr

SMNN-1 40 231.57 936.51 0.71513 0.704743 SMNC-6 40 122.91 769.11 0.46223 0.705346 SMRN-1 40 116.37 667.13 0.50450 0.705243 SMRN-1 34.15 Same same Same same

0.704956 0.704998

Sm/

144-

^'Sr/^^Sn

0.704337 0.705083

Nd

Nd/

143

Nd/ 144 144Nd Nd Ndi 0.6584 0.706055 0.7056809 4.9 25.5 0.1162810 0.512586 0.5125558 343.90 0.70082 0.706553 0.706154 6.203548 35.022421 0.1070858 0.512575 0.5125470 686.8 0.3597 0.707524 0.7073196 7.7 39.1 0.1181550 0.512549 0.5125184 634.5 0.4684 0.707049 0.7067829 6.2 34.1 0.1162851 0.512590 0.5125599 478.09 0.74912 0.705376 0.704950 5.590795 30.347291 0.1113774 0.512630 0.5126009 257.47 1.19815 0.707936 0.707255 3.229155 15.409021 0.1266913 0.512526 0.5124929 Sr

7.728958 6.240461 5.779017 same

35.455109 0.1317941 0.512731 31.692680 0.1190404 0.512564 30.066715 0.1162009 0.512611 same same same

0.5126965 0.5125329 0.5125806 0.5125850

* Values in italic were compiled from neutron activation trace element analysis data.

to

130

2.4.1 Rb/Sr isotope geochemistry Marker diagrams for Sr and Rb, and correlation diagrams among isotope ratios as well as between isotope ratios and major or trace elements are presented in Figure 2.4.1. The samples display generally decreasing values in Sr with increasing silica, however Rb contents do not vary in a straightforward fashion with increasing silica. Relatively mafic samples (samples with Si02 contents below 60 wt.%), show both high and low values, while more silica-rich samples show intermediate and more uniform values, with some outliers (most notably early phase Ha sample SMCA-8 from Concepcion del Oro is enriched, while early phase He sample SMCS-7 from that same pluton and early phase I sample SMP-1 from Providencia are depleted. Values for ^^Sr/^^Sr in the table and graphs indicate the majority of the samples are enriched to varying degrees relative to an undifferentiated bulk silicate earth model (BSE) present day isotope ratio of ^^Sr/^^Sr=0.7045 (DePaolo, 1988). An exception to this is the early phase I sample SMNN-1 from the Noche Buena intrusion, with ^^Sr/^^Sr=0.7047. A ^'Sr/^Sr vs. silica diagram shows that enrichment in radiogenic ^^Sr correlates with increasing Si02. The same is true with respect to the inverse of the concentration of Sr in the rock, where most samples show good correlation with progressive enrichment in

Sr, except in the case of

late phase nia sample SMCM-9 from the Concepcion del Oro intrusion, relative to phase nb sample. 2.4.2 Sm/Nd isotope geochemistry Similar to the previous paragraph on Rb/Sr isotope geochemistry, Harker diagrams for

131

Nd and Sm, and correlation diagrams among isotope ratios as well as between isotope ratios and major elements or trace element ratios are presented in Figure 2.4.2. The Harker diagrams compare ICP results of the specific samples selected for isotopic analysis with the NAA results from trace element geochemistry on the same samples where possible, while the correlation diagrams show the NAA values against isotope values and display the isotopic values for Chondrite Uniform Reservoir (ChUR) for comparison. Generally samples display decreasing concentrations of Nd and Sm with increasing silica. Only exceptions to this are the early phase Ha and He samples (SMCA-8 and SMCS-7 respectively) in the Concepcion del Oro district, but particularly the second one; and the sample from the central part of the dike near Santa Rosa, relative to the margin sample. Values for ''^^Nd/''^Nd in the table and graphs indicate the majority of the samples are depleted to varying degrees relative to an undifferentiated chondritic uniform reservoir bulk earth model (ChUR) present day isotope ratio of ''^^Nd/''^'^Nd=0.512638 (Goldstein et al., 1984). An exception to this is the early phase I sample SMNN-1 from the Noche Buena intrusion, which, with ''^^Nd/''^'^Nd=0.512731, is enriched relative to ChUR. A ''^^Nd/^'^'^Nd vs. silica diagram suggest that depletion in radiogenic '"^^Nd does show a moderately good degree of correlation with increasing Si02. The exception being phase nia sample SMCM-9 from the Concepcion del Oro pluton, which is enriched in '"^^Nd relative to phase lib sample SMCM-6. However with respect to the sum of the rare earth element values (EREE) or the normalized trace element ratio La/Lu in the rock, this difference is less obvious and the diagrams appear to show good correlation with

132

progressive depletion in

Finally ''^^Nd/^'^'^Nd against Eu anomaly (Eu/Eu*)

indicates again some degree of correlation between depletion and negative Eu anomalies (the smaller the value of Eu/Eu*, generally the more depleted in '"^^Nd the sample appears to be), however late phase Ilia sample from Concepcion del Oro is again an exception, being more enriched despite the stronger negative Eu-anomaly relative to earlier samples. Also late phase V sample SMPV-1 from Providencia is anomalous in that it is significantly depleted in '"^^Nd despite having a slightly smaller Eu-anomaly relative to phase I sample SMP-1.

133

Concepcion del Oro area intrusive samples Rb vs. Si02 plot

• Concepcibn del 200 • -

? a

£: 160 •A K



Oro Providencia

A

Noche Buena



A

100 ...Q.

55

60

Santa Rosa - Concepci6n del Oro main trend

65

SiO, [wt. %]

Concepcion del Oro area intrusive samples Sr vs. Si02 plot 1000 -

900 800 -

#

Concepcl6n del Oro Providencia

700 E S ^



600 500 -

A

Noche Buena

400 •



Santa Rosa

300 •

••»---Concepci6n del Oro main trend

200 100 - - 0 -

40

55

60

65

aOj (wt. %j

Concepcion del Oro area samples "Sr/®®Sr vs. (1/Sr)x1000 plot

SMPV-1 • SMCM-6 • SMCM-9 SMCA-;

• SMCS-7

- -O projected

C. del Oro Providencia

A

Noche Buena

O

Santa Rosa

....... Bulk Silicate

SMNG-6 A «

• SMP-1 SMRN-1 A SMNN-1

2

o



Earth

3

(1/Sr)x1000{ppm-^]

Figure 2.4.1: Harker diagrams for Rb, Sr, and correlation diagrams between ^^Sr/^^Sr against (1/Sr) x 1000 (wi (with ^^Sr/^^Sr vs. silica inset) for samples from the Concepcion del Oro area.

134

Concepcidn del Oro area intrusive samples Sm vs. Si02 plot

AA

7-

• Concepci6n del 6#•



Oro Pro\^dencia

A

Noche Buena

5-

E' & 4



3-

. .-3-

Santa Rosa - Concepcion del Ore main trend

2 -

1 -

0-

55

60

65

SiOj [wt. %)

Concepci6n del Oro area intrusive samples Nd vs. SiC)2 plot 40 ^

A 35 •

W.

:

\ • Concepci6n del

30

Oro ProMdencia

• 25 1

Noche Buena

A

E % 20 -



15 -

...Q.

10 •

Santa Rosa • Concepcidn del Oro main trend

5 0•

40

45 SiO,[wt. %]

Concepcion del Oro area samples ^'"Nd/^'^Nd vs. Eu/Eu* plot

A SMNN-1

F SMP-1 SMRN-L* SMCA-8 • • SMNC-6A SMCM-6

j

• SMCS-71

O

C. del Oro



Providencia

A

Noche Buena

O

Santa Rosa Chondrite Unifonrj Reservoir

I SMPV-1 I

Figure 2.4.2: Harker diagrams for Sm, Nd, and correlation diagram between vs. Eu/Eu* (with vs. silica inset) for samples from the Concepcion del Oro area.

135

2.4.3 Oxygen isotope geochemistry Quartz and plagioclase separates, when possible coexisting pairs, from the same samples of the Concepcion del Oro intrusive used for Sr and Nd isotopes were analyzed for oxygen isotopes. Their values, listed in the following table, are relatively enriched in and are comparable to evolved magmatic rocks (granites, diorites and related lithologies; Taylor, 1968a; O'Neil et al. 1977) or waters in equilibrium with them therefore without significant interaction with meteoric waters. From the samples in this district, the early phase la sample SMCA-5 is almost by 2%o lighter than the later phases (see Figure 2.4.3.1). Two separates from the strongly altered porphyritic igneous rock at Sol y Luna, samples SCR-Q4 and SCR-Q5, were also analyzed. The isotopic signature of these two samples is significantly heavier than all other samples in this study (between 3%o and 7%o, relative to main phase samples SMCA-8, SMCM-6 and SMCM-9). Where mineral pairs were analyzed, equations by Matsuhisa et al. (1979) were used to estimate possible emplacement temperatures for the igneous rock. The only sample for which a primary igneous equilibration temperature was obtained is phase Ha sample SMCA-8, for which one of the quartz-plagioclase pairs yielded a temperature of around 666 °C using a Aquartz-piagiociase equation with a temperature range of applicability between 500°C and 800°C (Matsuhisa et al., 1979). The rest of the data indicate that reequilibration took place under subsolidus conditions, as can be seen in upper left Figure 2.4.3.2. It can also be pointed out, that the latter phases appear to have re-equilibrated within the range of 400°C and 500°C.

Table 2.4.3: Oxygen isotope values of quartz and plagioclase separates for samples from the Concepcidn del Oro area. Sample Igneous phase Mineral SMCA-5 la quartz SMCA-8 Ha quartz SMCM-6 nb quartz SMCM-9 nia quartz SCR-Q4 He quartz SCR-Q5 He quartz SMNM-2* mb quartz SMRN-1 I quartz

5^*^0 [%c] 7.8 9J, 9^, 8.4 9.6

M

Mineral

5"0 [%o]

plagioclase plagioclase plagioclase

8.1

plagioclase

82

L9

12.5, 12.5 15.5, 16.1 10.3 9J

* Sample SMNM-2 was analyzed for oxygen isotopes by Rollog (2003) as sample SMNM-. Underlined samples correspond to quartz-plagioclase pairs.

The quartz separate from the Noche Buena igneous center can only be evaluated in a general way by comparison with the samples in the previous paragraph. Compared with them, late porphyritic phase EHb sample SMNM-2 from the northern flank of the Noche Buena pluton is somewhat enriched in

18

O than the phases in the Concepcion del Oro

intrusion. In fact, its 5'^0 signature is heavier than documented values for I-type granites. Sample SMRN-1 from the Santa Rosa igneous center, in contrast, falls within the group of later igneous phases in the area. Application of geothermometric equations to a quartz-plagioclase pair from this locality reveals temperatures below magmatic, as well as narrowly below sub-solidus. This result has to be viewed in light that the sample was not collected within the main body of the igneous outcrop, but from a dike at some distance and should be only marginally affected by alteration. These observations are, overall, limited by the sample size and cannot be viewed as conclusive.

137

3 Oouartz values from samples of the Concepcldn del Oro intrusion compared to general ranges of igneous rocks after Taylor (1968a), Hoefs (1980) and O'Neil etal. (1977) Pegmatites — S-type granites l-type granites _SM^ SMCA-5

SCR-05

SMCM-6

SMCM-9^

I-

SCR-04

—Granites (general) Gabbros, basalts —— Ultramafic rocks

4.0

10.0

12.0

16.0

5"0 [ly

S^'Oouartz values of other intrusions In the Concepci6n del Oro area compared to general ranges of igneous rocks after Taylor (19€8a), Hoefs (1980) and O'Neil etal. (1977) — Pegmatites ^—S-type granites — l-type granites Concepci6n del Oro^ igneous •

SMRN-l.^

SCR-05

ASMNM-2

— Granites (general)

SC^Ot

—Gabbros, basalts — Ultramafic rocks

4.0

10.0 12.0 5^®0 [-/J

6.0

14.0

16.0

18.0

Figure 2.4.3.1: 5^^0quartz values of intrusive samples in the Concepcion del Oro area in relation to general ranges of igneous rocks. 5

Oquartz VS. 5

Opiagioclase

9.7 9.65

^SOOX —750X .7(X)°C

9.6 ).55 u V O

to

escc 600°C

Lines calculated for |3[An%] = 34.6 according to Matsuhisa et al. (1979) quartz plagloclase geothermometry equation between 500°C and BOCC



• SMCA-8

9.45 •9.4

550"C 500"C

o SMCA-8

• SMCM-6

O-

o SMCM-9

• SMRN-1

>.35

500'C f 9.3 7.900

8.000

8.100

8.200

8.300

800^C i 8.400

8.500

8.600

8.700

8.

3 ^plagioclaM

Figure 2.4.3.2: 6'^Oquartz/5'^Oplagioclase diagrams with lines of constant temperature for the specific sample anorthite component, after Matsuhisa et al. (1979).

138

S^Oquarte vs. 5"0 plagioclase 9.7 9.65

500°C

9.6

—480°C 9.55

460°C 440°C

9.5

500°C

-420°C

9.45

400°C

Lines calculated for p[An%] = 40.6 according to Matsuhisa et al. (1979) quartz plagioclase geothermonnetry equation t)etween 400°C and 500°C

9.4 AOO'C

9.35

# SMCM-6

9.3

"^plagioclase

S

Oquartz VS. 6

Opiagioclase

—500°C —480°C 460°C 440°C SOO'^C

420°C 400°C

Lines calculated for p[An%] = 32.9 according to Matsuhisa et al. (1979) quartz plagioclase geothermometry equation between 400°C and SOCC

400^0

8.000 ^

O SMCM-9

8.100

^plagioclase

'quartz VS. 5

Opiagioclase

9.7 9.65

gg g gg

h

^

Lines calculated for p[An%] = 21.5 according to Matsuhisa et al. (1979) quartz plagioclase geothermometry equation t>etween 400''C and 5(X)®C

500X U5 — 9.4

• SMRN-1

: 400°C 9.35

7.700

7.800

7.900

8.000

MOO

>.200

;.300

1.400

S ^plagioclase

Figure 2.4.3.3: 6'^Oquartz/6'^Opiagioclase diagrams with lines of constant temperature for the specific sample anorthite component, after Matsuhisa et al. (1979).

139

2.4.4 Discussion Rubidium and strontium Harker diagrams suggests, in agreement with major and trace element data, the existence of two pulses of magmatism for the Concepcion del Oro Providencia, and Noche Buena intrusions. However, they also suggest that a fundamental difference may exist between the earliest sample in the Noche Buena system and the rest of the samples. Even inclusion sample I-l from the Concepcion del Oro intrusion, similarly mafic in major element chemistry, does not have the high trace element concentrations shown by early phase sample SMNN-1 from Noche Buena. The isotope ratio graphs show varying degrees of enrichment in 87Sr for all samples indicating a crustal source for the different rocks. The least evolved of the samples corresponds to the early phase from Noche Buena, suggesting a significant mafic/alkalic component. The general absence of a positive-sloped isochron/errorchron in

52*7

8/^

#*7

Sr/ Sr vs. °'Rbr°Sr (Figure

2.4.4.1) between samples of the various phases within a given intrusion further suggests variable assimilation by different magmas rather than differentiation within co-magmatic rocks to be the predominant process in generating the intrusive suites in the Concepcion del Oro area. Rather than a progressive increase in felsic crustal component, a hiatus is considered to separate the early phases of intrusion and the later ones in the Concepcion del Oro intrusion. This seems to apply, despite limited sampling, for Noche Buena as well. These observations correlate with other geochemical evidence and field observations. In the case of the Providencia samples, field evidence precludes a direct relationship between samples SMP-1 and SMPV-1.

140

Nd and Sm Harker diagrams suggest two pulses of magmatism for the Concepcion del Oro and the Noche Buena intrusions, as indicated by the decrease in SiOi and the increase in Nd and Sm for between phase Ha and lib (samples SMCA-8 and SMCM-6 respectively) from the former, and samples SMNC-4 and SMNC-6, corresponding to phases n and IV from the later. Values for ^"^^Nd/'^^Nd for the majority of samples in the area are depleted with respect to ChUR, showing a crustal provenance, with the exception of early phase I sample from Noche Buena. There are however some differences, based on the correlation diagrams; some late phases appear less evolved than the early ones, share however depleted Nd signatures with the latter phases (Providencia phase V sample SMPV-1, Noche Buena phase IV sample SMNC-6); while others appear, despite being more evolved, to be less depleted (Concepcion del Oro phase IHa sample SMCM-9, Santa Rosa sample SMRN-1). This suggests on the one hand contributions from isotopically less evolved sources to the magmas at different stages, both early and late. On the other hand, a relatively mafic rock like late phase IV sample SMNC-6 from Noche Buena is significantly depleted, suggesting a crustal source despite its chemistry. Calculated epsilon Sr and epsilon Nd values suggest the intrusives have possibly derived from a mafic source with variable degrees of crustal contamination. Most values for present day epsilon Nd lie between 0 and -2. Recalculated to an age of 40 Ma (Buseck, 1962), most samples have epsilon Nd values around 0. Values for epsilon Sr range between 10 and 50 (present day) or between 7 and 40 (40Ma). By comparison with lower crustal xenoliths from San Lms Potosi (Ruiz et al., 1988; Chesley & Ruiz, unpublished data), these values suggest that contamination with a metasedimentary

141

source at depth or a sedimentary source at the level of emplacement is not substantial (see Figure 2.4.4.2). Global marine ^^Sr/^^Sr values for the periods corresponding to the main limestone formations in the area were extrapolated from Veizer et al. (1999) and used as proxies for the formations in question. Phase I sample SMNN-1 from the Noche Buena intrusion is different in that it has a negative epsilon Sr and a positive epsilon Nd value at 40 Ma (-1.7 and +2.2). These values lie within the 'mantle array' trend, further supporting a mafic origin for the sample. Oxygen isotopes show values within the range of granitic rocks and, in the main, spanning the range of I-type granites (O'Neil et al., 1977). Main and late phases show consistently higher values than early phases. Late porphyritic phase sample SMNM-2, as well as separates from Sol y Luna appear to indicate assimilation of country rock. Carbonate units within the region are a likely end-member. Values compiled for different carbonate units in the district of Providencia (Sawkins, 1965) are represented in Figure 2.4.4.2.

142

Concepcion del Oro area samples "Rb/"Sr vs. "Srl^Sr plot

»SMPV-1

.:

OC. del Oro

• SMCM-6 • SM(M-9 •SMCS-7 : •.SMCA-8 ;

• Providencia ^ Noche Buena o Santa Rosa • Bulk Silicate Earth

SMNC-6^3^^SMP-1

ASMNN-1 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

«'Rb/"Sr

Concepcion del Oro area samples i43fjd/i'MNd VS. ^"^Sm/^'^Nd plot 0.512750

ASMNN-1 oConcepcibn del Oro • Providencia 2 0.512650

3

A Noche Buena

ISMP-I • SMRN-1 SMCM-9 • ! 4 SMCA-8 A SMNC-6 SMCS-7 SMCM-6 •-

o Santa Rosa

I SMPV-1 0.6

• Chondrite Uniform Reservoir

0.8

Figure 2.4.4.1: ^^Sr/^^Sr vs. ^^Rb/^^Sr and '^^Nd/'^Vd against '^^Sm/'^Vd for samples from the Concepcion del Oro area.

143

£Sri vs. £Ndi plot of intrusive samples in the Concepcion del Oro area • SMCA-8 • SMCS-7

6

o SMCM-6

4 :

• SMCM-9

2 :

• •

ZO r

CO

I

SMP-1 SMPV-1

A SMNN-1

-2 j

• SMNC-6

-4 i



-6

SMRN-1 -Mantle Array

Upper Jurassic (da(1
• D.M.

eSr,

S^^Oquartz vs. ESr, in rocks from the Concepcion del Oro pluton compared to regional host rocks ! : Cupido Fm. 0

Cuesta del

* SMCA-8

Cura Fm.



Zuloaga Fm.

L O •

Quartz from the strongly altered Sol y Luna intrusive

O

SMCA-8

O

SMCM-6

« SMCM-9 SCR-Q4 SCR-Q5

" ^

5"0.,

Figure 2.4.4.2: 8Sri vs. 8Ndi and 5'^Oquartz vs. £Sri for samples from the Concepcion del Oro area with Sr isotope values from global marine data (Veizer et al., 1999) and 5'^0 values from local sedimentary host rocks (Sawkins, 1964). £Sri values for quartz separates from a strongly altered intrusive sample from Sol y Luna correspond to the less altered sample SMCS-7. £Sri values for sedimentary formations were calculated from the global sedimentary values for the Oxfordian (180Ma, Zuloaga Fm.), Barremian (125Ma, Cupido Fm.) and Albian (80Ma, Cuesta del Cura Fm.) stages.

144

2.4.5

Comparisons

Comparison between analyses from intrusives in the Concepcion del Oro area and data for other igneous centers in the central sector of the Sierra Madre Oriental, midTertiary igneous suites related to mineral deposits in the Mexican Plateau (Barton and Megaw, unpublished data; Graf, 1997; Gilmer et al., 1988; Ruiz, 1983; Tuta, 1980) and porphyry copper deposits in Arizona (Lang, 1991) through major and trace element discrimination diagrams provides a common frame of reference against which to infer possible metallogenic commonalities and differences (Figures 2.4.5.1 through 2.4.5.4). The majority of samples in the Concepcion del Oro area conform to a general trend both defined by mineralized mid-Tertiary Mexican Plateau and Arizona igneous centers related porphyry copper deposits that corresponds to Lameyre and Bowden's calc-alkaline granodiorite trend (Lameyre and Bowden, 1982). Further consideration of trace element tectonic discrimination diagrams by Pearce et al. (1984) and Harris et al. (1986) suggests derivation of these igneous rocks from volcanic arc magmas that appear to evolve toward or assimilate a differentiated, felsic continental crust represented in the different diagrams respectively by syn-collisional and within-plate granite, as well as syn-collisional, late to post-collisional, and within-plate granite signatures. These support the generally accepted view of an igneous and metallogenic evolution similar to other subduction-related magmatic arcs (Clark et al., 1982). However some differences exist in major and trace elements that are worth pointing out. The early phases in the Concepcion and Noche Buena intrusion seem to define a trend toward silica-undersaturated compositions in the

145

QAP diagram that is generally mirrored by dioritic intrusions in the central sector of the Sierra Madre Oriental (Cerro Pedregoso, El Saltillito, Rocamontes, San Rafael and Cerro Prieto) but not, with few exceptions (Velardena), by other igneous centers in the Mexican Plateau (see Figure 2.4.5.1). Also, unlike most mid-Tertiary Mexican Plateau centers, the majority of intrusive phases in the Concepcion del Oro area define a trend within the volcanic arc granite field of Harris et al. (1986) discrimination diagram that is only paralleled by some of the dioritic intrusion samples and some of the samples in the San Martm pluton (see Figures 2.4.5.2 and 2.4.5.3). Li contrast, the majority of samples in the Mexican Plateau display a trend near the boundary between the volcanic arc and the orogenic granite fields that is similar to that of samples from porphyry copper deposits in Arizona (see Figures 2.4.5.3 and 2.4.5.4). They suggest a potentially different, more mafic source for the majority of magmas compared to other intrusions, or residence in a crustal region that is less homogeneous and includes more mafic elements than other areas in north-central Mexico. The latter possibility could explain the bimodal distribution of samples between the volcanic arc and the late to post-collisional granite fields in the Concepcion del Oro samples, the majority of dioritic intrusion samples and the San Martin samples.

146

Comparative QAP diagram between Concepcion del Oro area samples and other centers in the central sector of the Sierra IVIadre Oriental Le Maitre et al. (1989) after Streckeisen (1976)

O Concepcidn del Oro • ProMdencia A Noche Buena o Santa Rosa •Cerro Pedregoso, COA • El Saltiliito, ZAC ARocamontes. COA -San Rafael, ZAC • Cerro Prieto, DGO

K [% m eson<^matlve*]

Comparative QAP diagram between Concepcion del Oro area samples and selected northern and central Mexico igneous-related deposits Le Maitre et al. (1989) after Streckeisen (1976) OConcepcidn del Oro Q Providencia ^Noche Buena O Santa Rosa • S. Pedro Corralitos, CHIH • Hidalgo del Parral, CHIH 4 Rodeo. DGO O Navidad, DGO OVelardena, DGO • San Martin, ZAC AGuadalcdzar, SLP • Las Cuevas, SLP ^El Realito, SLP • Charcas, SLP

K [% mesonormative*]

Comparative QAP diagram between Concepcidn del Oro area igneous samples and selected Arizona porphyry copper deposits Le Maitre et aL (1989) after S^eckeisen (1976), Lang (1990)

o AZ porphyry copper deposits ^Concepcion del Oro • ProMdencia A Noche Buena • Santa Rosa

K[% mesonormative*]

Figure 2.4.5.1: Comparative QAP diagrams between Concepcion del Oro area igneous samples and regional suites in the central sector of the Sierra Madre Oriental (this work), mineralized igneous systems in the Mexican Plateau (Barton & Megaw, unpub. data; Graf, 1997; Gilmer et al., 1988; Ruiz, 1983; Tuta, 1980) and Arizona porphyry copper systems (Lang, 1990).

Concepci6n del Oro area igneous samples Nb vs. Y diagram,

Concepcidn del Oro area igneous samples Y+Nb vs. Rb diagram,

after Pearce et al. (1984)

after Pearce et al. (1984)

'

o



ProMdencia



Providencia

Noche Buena

L

Noche Buena

O

Santa Rosa

Svn.CoLG

W.P.G

o

Santa Rosa



Cerro Pedregoso, COA El Saltillito. ZAC

0

w.p.a





Rocamontes, COA

A

San Rafeel, ZAC

V.A.Q

V.A.a

O.R.G

A

o.R.a

-



Cerro Prieto. DGO

Syn.Col.G

Concepcion del Oro

O

(^ncepcidn del Oro

CeiTO Pedregoso. COA El Saltillito. ZAC Rocamontes. COA San Rafael ZAC Cerro Prieto. DGO

..-0- • Concepcion del Oro

• Concepci6n del Oro 100 [ppm]

Concepcibn del Oro area igneous samples ThAJ diagram,

Concepcion del Oro area igneous samples Hf - Rb/30 - Ta*3 diagram

after Bouse et al. (1994)

after Harris etal. (1986)

O Concepcion del Oro

Granites

Providencia

A

Noche Buena

^ Noche Buena

0

Santa Rosa

^ Cen^o Pedregoso, COA

• Cerro Pedregoso, COA

E a 25

• El Saltillito, ZAC ^Rocamontes, COA -San Rafael. ZAC

collisional

Concepcion del Oro

• Providencia

O Santa Rosa Svfn-collis lona

O



• Cerro Prieto, DGO 1:1 ratio



El Saltillito. ZAC

A

Rocamontes, COA

-

San Rafael. ZAC



Cerro Prieto, DGO • Concepci6n del Oro main trend

Hf (ppm)

U(ppm]

Figure 2.4.5.2: Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and regional igneous suites in the central sector of the Sierra Madre Oriental (this work).

Comparative Nb vs. Y diagram between Concepcion del Oro area samples and selected northern and central Mexico igneous deposits

Comparative Y+Nb vs. Rb diagram between Concepcion del Oro area samples and selected northern and central Mexico igneous deposits

after Pearce et al. (1984)

after Pearce et al. (1984)

W.P.G

V.A.G. •

O.R.(;.

Syn.CoLG

O Concepci6n del Oro • Providencia A Noche Buena O Santa Rosa # S- Pedro Corralitos, CHIH • Hidalgo del Parral, CHIH A Rodeo, DGO o Na^dad, DGO • San Martin, ZAC • Charcas, SLP A Guadalcdzar, SLP • Las Cue««s. SLP ^ El Realito, SLP . -o- • • Concepci6n del Oro main trend

0



Svn.CoLG

L 0

W.P.G



C.del Oro. ZAC Providencia. ZAC Noche Buena. ZAC Santa Rosa. ZAC S. Pedro Corralitos. CHIH

• Hidalgo del Parral. CHIH A

0

Rodeo. DGO Navidad. DGO

• San Martin. ZAC • Guadalcazar. SLP



U.R.(i.

V.A.G



Las Cuevas, SLP El Realito. SLP

• Charcas, SLP Concepcion del Oro main trend

Y'tMb [ppml

Y [ppm]

Comparative ThAJ diagram between Concepcibn del Oro area samples and selected northern and central Mexico igneous deposits,

Comparative Hf- Rb/30 -Ta*3 diagram between Concepcibn del Oro area samples and selected northern and central Mexico igneous deposits,

after Bouse et al. (1994)

after Harris et al.(1966)

Srn-coUisioAal nites

collision

W.P.G

oConcepcibn del Oro • Providencia ^ Noche Buena O Santa Rosa 4S. Pedro Corralitos, CHIH • Hidalgo del Parral, CHIH 4 Rodeo, DGO O Na\idad. DGO • San Martin, ZAC A Guadalc^zar, SLP •Las Cue\^s, SLP 4 El Realito, SLP • Charcas, SLP

4:1 ratio

Concepcidn del Oro Providencia Noche Buena Santa Rosa S. Pedro Corralitos. CHIh Hidalgo del Parral. CHIH Rodeo, DGO

a 25

Navidad, DGO San Martin. ZAC 2:1 ratio

Guadalcdzar, SLP Las Cuevas, SLP El Realito. SLP

1:1 ratio

Charcas, SLP • C. del Oro main trend

Figure 2.4.5.3: Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and mineralized igneous systems in the Mexican Plateau (Barton and Megaw, unpublished data; Graf, 1997; Gilmer et al., 1988; Ruiz, 1983; Tuta, 1980).

Comparative Nb vs. Y diagram between Concepcidn del Oro area samples and selected Arizona porphyry copper deposits

Comparative Y+Nb vs. Rb diagram between Concepci6n del Oro area samples and selected Arizona porphyry copper deposits (Lang, 1990) after Pearce et al. (1984)

after Lang (1990) Concepcion del Oro Providencia Noche Buena Santa Rosa Ajo

W.F.Ci

0

Svn.CoLG



9

V.A.G



O.R.a

Syn.ColG

Copper Basin Copper Creek Crown King Diamond Joe Ray, Christmas Safbrd Tombstone • Concepcion del Oro main trend

Concepcidn del Oro area igneous samples Hf - Rb/30 - Ta*3 diagram after Harris et al. (1986)

W.P.G

Noche Buena. ZAC

0

0

Santa Rosa, ZAC Ajo Bagdad Copper Basin Copper Creek



Crown King

A

Diamond Joe Ray. Christims Safford Tonfcstone



• A

•4^* J*

/ V.A

R

O.R.G

C. del Oro, ZAC Providencia, ZAC

L

• •



- Concepcion del Oro rrs in trend

Concepcidn del Oro area igneous samples Th/U diagram, after Bouse et al. (1994) Concepcion del Oro Providencia

O Concepcidn del Oro • ProMdencia ^ Noche Buena O Santa Rosa •Ajo .
La^ collisional

Gr^e V.A.G

A Copper Basin O Copper Creek • Crown King A Diamond Joe • Ray. Christmas 4Safford • Tombstone

Noche Buena Santa Rosa 4:1 ratio,

2:1 ratio;

Ajo Bagdad Copper Basin Copper Creek Crown Kir>g Diamond Joe Ray, Christmas Safford Tombstone C. del Oro main trend

Figure 2.4.5.4: Comparative trace element tectonic discrimination diagrams between Concepcion del Oro area igneous samples and selected porphyry copper deposits in Arizona (Lang, 1990).

The assumption that crustal assimilation may be the dominant mechanism responsible for the trace element signature of the magmas in the Concepcion del Oro area is supported by the discussion of Rb/Sr and Sm/Nd isotope data (see section 2.4.4), but becomes apparent in graphical form when samples from Concepcion del Oro area intrusives are plotted in £Nd vs. time space against mafic intrusives in the central sector of the Sierra Madre Oriental (Figure 2.4.5.5). Lower crustal compositions observed in xenoliths from San Luis Potosi maars (Ruiz et al., 1988) are, along with a mantle source, possible candidates for crustal assimilation end-members (see Figure 2.4.5.6). At the one end of the spectrum, a gamet-bearing paragneiss from the Los Contreras maar (sample LC-6) represents a felsic continental crust, while a pyroxene-plagioclase granulite from the same location (sample LC-11) represents a mafic crust. The samples from the Concepcion del Oro area form a relatively tight cluster between 8Ndp ~ 0 and £Ndp ~ -2, except for the early phase of the Noche Buena, which shows a positive 8Ndp value at around +2. Positive ENdp values occur in all analyzed samples of the central sector dioritic intrusives, generally between +2 and +4. In contrast, samples from the San Martm pluton show more negative in 8Nd than those in the Concepcion del Oro area, suggesting a different source with a more felsic crustal component.

151

Concepcion del Oro area samples eNd vs. time plot SMCA-K SMCS-7



SMCM-6 • - SMCM-9

SMP-I

-•

-•m-- SMPV-1 -A- SMNN-1 SMNC-6

-A--

SMRN-1 Depleted Mantle

Time [Ma]

eNd/time plot for Concepcion del Oro area rocks, nearby mafic intrusions and the San Martin pluton (Graf, 1997) C. del Oro -C3- Providencia Noche Buena -O- Santa Rosa SMT-3a SMT-7

• •

SMV-1 SMV-7a SMV-K SMJ-1

-A-

U-21 SM94-MP -O- SMQP-S

-•

Depleted Mantle

Time [Ma]

Comparative eNd/time plot between Sierra IVIadre Oriental central sector intrusions and lower crustal xenoliths —O—C. del Oro -D— Providencia —A— Noche Buena —O— Santa Rosa SMT-3a -•-SMT-7 -•-SMV-I SMV-7a SMV-8 -A-SMJ-1 Depleted Mantle

•2— LX^-6 -U- LC-11

Time [Ma]

Figure 2.4.5.5: Comparative £Nd vs. time diagrams between Concepcion del Oro area igneous samples, mafic intrusives in the central sector of the Sierra Madre Oriental and the San Martin pluton (Graf, 1997); and all intrusive samples in the central sector including two representative lower crustal xenoliths from the Los Contreras maar in San Luis Potosf (Ruiz et al., 1988).

152

ESn vs. ENdi plot of intrusive samples in the Concepci6n del Oro area compared to xenoliths(Chesley and Ruiz, unpublished data)and mafic intrusions

• C. del Oro



Providencia

A Noche Buena

pyroxene-plagioclase granulite



Santa Rosa

X Rocamontes



C. Pedregoso C. Prieto Mantle Array

• D.M. o LC-6 A LC-11

gamet-bearing paragneiss at FNdi=-11 and cSri=356 45

eSri

8Sri vs. £Ndi plot of intrusive samples in the Concepci6n del Oro area compared to lowercrustal xenolithsand the San Martin pluton(Graf, 1997)

• C. del Oro

• A\

pyroxene-plagioclase granulite

• ' •

Providencia

A Noche Buena

-

Santa Rosa

X San Martin Mantle Array

• D.M. o LC-6 gamet-bearing paragneiss

A LC-11

at ^Ndi=-11 and fSri=356 45

eSfj

Figure 2.4.5.6: Comparative 8Ndi vs. ESri diagrams between Concepcion del Oro area, mafic intrusives in the central sector of the Sierra Madre Oriental, and San Martin pluton igneous samples (Graf, 1997), including representative lower crustal xenoliths from San Lui's Potosf (Ruiz et al., 1988).

153 Chapter III Mineral chemistry of rock-forming minerals in igneous rocks from the Concepcion del Oro area. 3.1 Introduction Whenever possible all major rock-forming minerals were analyzed in each sample, also alteration minerals were considered, however the frequency of both rock-forming and alteration minerals also depended on the abundance or scarcity of a given mineral species in the sample. 3.2 Methodology 3.2.1 Sample selection Samples from the Concepcion del Oro intrusion selected for electron microprobe analysis include those samples considered part of the main trend of magmatic evolution in the system: porphyritic *phase lib sample SMCM-6, phase Ilia sample SMCM-9 and aplitic phase Illb sample SMCM-11. Phases la and Ila, samples SMCA-1 (not included in the major and trace element geochemistry due to its alteration), SMCA-5, and sample SMCA-8 respectively, which correspond to what is considered an earlier magmatic pulse, were also analyzed. In the case of the Providencia samples, phase I sample SMP-1 (a hornblende ± biotite monzonite) was substituted by phase Ila biotite ± hornblende monzonite sample SMPG-1 from the Gloria Estela area, considered its closest equivalent from the standpoint of petrographic mineral composition and time). However, the intervening porphyritic monzonite phases lib and He from the Gloria Estela area (samples SMPG-2, SMPG-3

154 and SMPG-5 respectively), as well as phase IVa samples SMPW-1 and SMPW-3 and phase V micro-granodiorite sample SMPV-1 were also analyzed. From Noche Buena, two equivalent samples to early dioritic phase I sample SMNN-1 (sample SMNC-1 and SMNC-2) were analyzed. Also phase II homblende-biotite monzonite sample from the Aurora area (sample SMNA-2) and the porphyritic phase III SMNA-4 were analyzed. Finally sample SMRN-1 corresponding to the center of the Puerto Blanco dike, northwest from Santa Rosa, was analyzed as the closest equivalent of that igneous body. Electron microprobe analyses were performed on a wavelength-dispersive Cameca SX-50 device at the Lunar and Planetary Sciences Microprobe Laboratory of the University of Arizona, under the guidance of Dr. Ken Domanik. An electron beam with a current of 20 nA and an accelerating voltage of 15 kV, focused to a minimum spot was used for the analyses. Calibration for all major elements was performed on a variety of natural mineral standards with a counting time of 15 seconds per element. The samples were analyzed under the same conditions. In the case of plagioclase feldspars, but on occasion also of amphiboles and biotites, transects were across mineral grains in order to record some zonation patterns. These are, from prior petrographic analysis, particulary prominent in the plagioclases. 3.2.2 Data Analysis The geochemical data were first converted from elemental wt% to moles, according to standard procedures, and then normalized. Plagioclase and K-feldspar analyses were normalized to Si-i-Al=4 cations. Pyroxenes were normalized to Scations=4, with Si-i-!/2Al=2 on the T site; and Ca+Mg+Fe+Mn+y2Al=2, with all Ca in the latter assigned

155 to site M2 while the rest of cations are assigned to either site Ml or M2 using differences in the partition of Mg, Fe, Mn and Ti between them. Amphiboles were normalized to i;cations=13, which includes cations assigned to sites T, Ml, M2 and M3 but excludes cations assigned to sites M4 and A. In the latter, all Ca and necessary Na is assigned to site M4, while the remainder of the alkalies (Na+K) are assigned to site A. Biotite analyses were normalized to 11 oxygens and the iron ratio Fe^V[Fe^^+Fe^'^] was assumed to be 0.8. All Si plus needed A1 were assigned to the T site to a total of T=4 cations; Na, K and Ca were assigned to site A, and the remainder to the M site. Elements F and CI were also analyzed, and, taking into consideration the difference between the analysis total and the sum of all cations, as well as the stoichiometric total of oxygens in the biotite formula, the hydroxyl group was calculated indirectly to satisfy the condition E(F, CI, 0H)=2. Pyroxenes were classified according to nomenclatures by Morimoto (1988) and Deer et al. (1963), while classification and graphical representation of data for amphiboles followed the nomenclature by Leake (1978). Biotite compositional data were classified and displayed following the nomenclature of Gunow et al. (1980). In addition to obtaining general compositional data for the mineral constituents present in the different igneous phases, specific analysis points were selected taking into account textural relations, to obtain, if possible, geobarometric and thermometric estimates and other intensive variables (see section 3.8).

156 3.3

Feldspar compositions Plagioclase is the most common mineral constituent in the igneous rocks of the

Concepcion del Oro area. Plagioclase analyses from the different intrusive phases show generally compositions in the andesine field with few exceptions. Histograms of the data show, in most samples analyzed, a roughly normally distributed group of values, that we term the main group, with a spread in compositions toward the albite end-member. The latter often constitute rims and overgrowths. Average and range of compositions for both overall and main group data, as well as temperature estimates are presented in Table 3.3. K-feldspar occurs late in the majority of intrusives examined, with the only exception of the Santa Rosa igneous center and phase IV sample SMPW-3 of the Providencia intrusion. It generally is interstitial to early plagioclase and mafic minerals and coeval with quartz, except in the Santa Rosa and Providencia phase IV igneous samples, where it occurs as phenocrysts, along with plagioclase. K-feldspar compositions have in most samples a narrow range of variation, generally between 70% and over 90% orthoclase component. In the Santa Rosa and Providencia samples mentioned above, a wide range of compositions spanning almost the entire continuum between orthoclase and albite, with at least one significant cluster of values around Or^^ to Or^^, was encountered. Average and range of K-feldspar compositions are also listed in Table 3.3.

Table 3.3: Average composition and range of plagioclase and K-feldspars; and average temperature of plagioclase-potassium feldspar pairs after Stormer (1975) for phases of the different intrusive centers in the Concepcion del Oro area.

Sample SMCA-1 SMCA-5 SMCA-8

Mean/ range of plagioclase Phase compositions [Xah] la 1.40-32.41-47.54 (aii) 26.27-37.51-47.54 la 2.09-30.88-56.42 (aii) 21.15-39.11-56.42 ^ain) Ila 6.59-35.81-51.97 (aii)

Main group composition Andesine

88.21-92.14-93.78 Andesine 73.36-81.85-93.22

21.15-37.68-51.97 ^ain) 14.81-41.95-67.56 (aii)

Andesine

29.60-43.43-67.56 (main)

Andesine

SMCM-6

lib

SMCM-7

Ilia

Phenocrysts altered

SMCM-9^

Ilia

14.76-33.68-49.77 (am 1.75-29.15-44.48 (aii)

Andesine

12.70-24.11-34.15 (Groupi) 35.41-38.80-44.48 (Group2)

Oligoclase Andesine

SMCM-ll' lllb

Mean/range of K-feldspar compositions [Xpr] 61.03-89.43-95.54

76.86-85.83-96.49 72.08-82.13-90.41 92.54-94.62-96.26 34.16-73.62-92.64

SMPG-1

Ila

88.70-92.65-95.31 (am

Anorthite

K-feldspar not found

SMPG-2

lib

Anorthite

SMPG-3

lie

75.06-92.39-95.44 (am 2.78-31.42-45.97 (am

99.63 51.29-

25.79-37.77-45.97 (^ain) 1.96-35.77-95.76 (am 34.82-41.56-95.76 (^aw I.33-31.50-62.49 (am

Andesine

II.72-21.85-37.45 (Oroupi)

Oligoclase

42.28-47.42-62.49 (GrouD2) 0.36-31.19-48.95 (am

Andesine

25.01-28.97-34.12 (Group2)

Oligoclase Andesine

SMPG-5

III

SMPW-1

IVa

SMPW-3

SMPV-1

IVa

V

36.84-43.23-48.95 rcrounS) 0.31-2.11-5.71 (am

-85.78

85.93-90.70-96.95 Andesine 47.11-68.64-97.14

11.43-47.57-95.95

Albite

92.30-91.06-97.41

Numbers in italics correspond to samples with only one suitable pair for geothermometric calculation. Sample size is not large enough. ^ Data distribution results in two groups with approximately normal distributions.Temperature estimates come from points close but not strictly rim pairs.

158 Table 3.3: (continued). Mean/ range of plagioclase 'base compositions [Xah] la 11.45-45.09-64.85 (all)

Sample SMNC-1

T

SMNC-2 ^

la

SMNA-2

II

SMNA-4 ^

III

SMRN-1

I '

'

Main group composition

31.91-55.45-64.85 toain)

Labradorite

2.45-13.19-21.39 (ain 5.58-34.05-90.99 (aii)

Oligoclase

22.61-37.41-90.99 ^ain)

Andesine

4.07-16.04-39.55 (ain 0.48-15.47-34.13 (aii)

Oligoclase

15.06-22.47-34.13 („,ain) ^ f

Oligoclase W

I..

Mean/range of K-feldspar compositions [Xor] 79.20-81.78-84.79 92.84 74.34-83.29-95.24 88.10-91.86-94.82 30.29-68.09-73.61 '• • •

m

Numbers in italics correspond to samples with only one suitable pair for geothermometric calculation. Sample size is not large enough. ^ Data distribution results in two groups with approximately normal distributions. Temperature estimates come from points close but not strictly rim pairs.

159 3.3.1

Concepcion del Oro

The plagioclase analyses corresponding to the various phases of the Concepcion del Oro intrusion correspond to intermediate compositions generally in the range of andesine, with an average content around An^"^. As can be seen from Table 3.3, the average compositions of the different phases reach a maximum in anorthite content with phase lib sample SMCM-6. However, the averages of the main groups show relatively similar values near An"^*^ for all early phases up to phase lib, and a noticeable decrease in late phase Ilia and the late aplite (phase Illb) with an average around An"^^. More Na-rich compositions occur in all phases, stemming often from overgrowths and/or alteration at the margins of plagioclase phenocrysts, however they seem to become comparatively more of a continuum in the aplitic phase. Also some outliers toward more Ca-rich compositions exist, related to the cores or inner zones of phenocrysts. Phenocrysts appear often zoned in an oscillatory to saw-tooth fashion. Potassium feldspar occurs interstitial to plagioclase and mafic minerals. It has generally an average orthoclase component over Or®'^. Particularly in the early phases, it is on average above Or^°, while it decreases toward the later phases. The late aplitic phase has an average orthoclase component around Or'"^ (see Table 3.3).

160

Feldspar compositions for the Concepclon del Oro intrusion Early pha% la (SMCA-1, SMCA-S)

X

SMCA-1

- SMCA-5

SMCA-8

Na [%' siife i]

Feldspar compositions for the Concepci6n del Oro intrusion Main phases lib (SMCM-6, SMCM-7), Ilia (SMCM-9a) and late apllte (SMCM-11a)

XSMCM-6 + SMCM-7a SMCM-9a -SMCM-11a

Plagioclase composition in the Concepcidn del Oro intrusion Anorthlte content vs. modal (observed) / normative (calculated) Quartz X

SMCA-1

O average + SMCA-5 o average SMCA-8 average

O 40 -

X SMCM-6

o average t SMCM-9a o average XSMCM-I1a O average 15

20

25

30

35

Qtz [modal %] or Qtz [normative

Figure 3.3.1; Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Concepcion del Oro intrusion.

161 3.3.2

Providencia

Plagioclase analyses corresponding to the various phases of the Providencia intrusion are to an extent incomplete, since there are no data on the main body of the intrusion, considered to belong to the early first phase. The earliest phase in the Gloria Estela porphyry, generally similar in both composition and texture to nearby outcrops of the main intrusive body upon macroscopic examination in the field, shows a significant amount of alteration, not the least in the plagioclase analyses. The early phases encountered in the Gloria Estela area show extremely Ca-rich compositions, while the later phases have compositions generally in the range of andesine. Outliers towards more Na-rich compositions are basically albitic, present on the margins of plagioclase phenocrysts with few intermediate compositions. Outliers toward more Ca-rich compositions seem to be absent. Phenocrysts in the early phases at Gloria Estela have a close to homogeneous composition around An^" to An^^ however the later phases show intermediate andesine compositions around An"^^. In contrast the late phase IV analyses show a wide compositional range from andesine toward albite, as well as between plagioclase and potassium feldspar. The latest phase V, already noted in major element geochemical analysis likely to be altered, shows a narrow compositional range of its plagioclase feldspars around albite. Potassium feldspar occurs in the early and main phases interstitial to plagioclase and mafic minerals in the analyzed rocks, with up to 15% albite component. In phase IV samples SMPW-1 and SMPW-3, however, extensive albite substitution exists. Particularly sample SMPW-3 shows what appears to be a liquidus line from potassium

162 feldspars with an average composition around Or^°, toward the oligoclase field. Furthermore, oscillatory zoned phenocrysts considered in petrographic work to be plagioclase, proved to be potassium feldspar-albite mixtures. In contrast, the late microgranodiorite phase V shows again potassium feldspar with very limited albite component. A general overview of plagioclase and K-feldspar compositions are displayed on Figure 3.3.2 and Table 3.3.

163

Feldspar compositions for the Providencia intrusion Early phases Ha (SMPG-1), lib (SMPG-2), lie (SMPG-3)

XSMPG-1

• SMPG-2

SMPG-3

Na [% site A]

Feldspar compositions for the Providencia Intrusion Main and late phases III (SMPG-5), IVa (SMPVV-1, SMPW-3) and V (SMPV-1) K

X SMPG-5 + SMPW-1 SMPW-3 -SMPV-1

± Na

Na [°A site A]

Plagloclase composition In the Providencia Intrusion Anorthite content vs. modal (observed) / normative (calculated) Quartz XSMPG-1 o a\«rage SMPG-2 o aserage SMPG-3 X SMPG-5

0 average 1 SMPW-1 o a\«rage X SMPW-3

O average 15

20

25

30

35

Qtz [modal %] or Qtz [normative Vij

Figure 3.3.2: Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Providencia intrusion.

164 3.3.3

Noche Buena

Plagioclase analyses of the early phase of the Noche Buena intrusion reveal relatively Ca-rich compositions, generally in the range of labradorite, An^° to An^^. Na-rich compositions in this phase tend to occur in altered rocks or on the margins of plagioclase phenocrysts. Later phases show a progressive shift toward compositions in the andesine and oligoclase fields, with mean anorthite contents around An^^ for phase II and An'^ for phase III and a relative wide spread of An values and both Ca- and Na-rich outliers. The mean value in phase III, however, may reflect alteration rather than a magmatic composition. Oscillatory as well as saw-tooth zonation are common in both early and intermediate phase phenocrysts. Potassium feldspar occurs usually interstitial to plagioclase and mafic minerals in the analyzed rocks. The scant data for the early phase show up to 20% albite component. In the less altered of the phase II samples, SMNA-2, substitution is more extensive with up to 25% albite component. No intermediate compositions between potassium feldspar and plagioclase have been observed, although these may exist. A general overview of plagioclase and K-feldspar compositions for samples from the Noche Buena intrusion is displayed on Figure 3.3.3 and Table 3.3.

165

Feldspar compositions for the Noche Buena Intrusion Phases I (SMNC-1, SMNC-2), II (SMNA-2) and III (SMNA4) K

X

SMNC-1

+ SMNC-2 SMNA-2a SMNA-2b -SMNA-4

Na [%, site A]

Plagioclase composition in the Noche Buena intrusion Anorthite content vs. modal (observed) / normative (calculated) Quartz

X

SMNC-1

O average + SMNA-2a O average

SMNA-4 average

15

20

Qtz [modal

25

30

35

or Qtz [normative %]

Figure 3.3.3; Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus modal whole rock quartz content (point-counted), or calculated whole rock quartz content (molecular norm) for all phases of the Noche Buena intrusion.

166 3.3.4

Santa Rosa

Plagioclase analyses from the Santa Rosa igneous center lie for the most part in the oligoclase field with only minor outliers towards more Ca-rich compositions. Phenocrysts display weak normal zoning or no zoning at all. Potassium feldspars present both as phenocrysts and in the matrix show around 25% to 30% albite component with further intermediate compositions forming what appears to be a liquidus line toward the oligoclase field. Plagioclase and K-feldspar compositions for the Santa Rosa igneous center are presented on Figure 3.3.4 and Table 3.3.

167

Feldspar compositions for the Santa Rosa igneous center sample SMRN-1 K

X SMRN-1

Na [%, site A]

Plagioclase composition in the Santa Rosa igneous center Anorthite content vs. tnodai (observed) I normative (calculated) Quartz

' 60 -

xSMRN-1 8 40

O 30 -

O average

O 5 2010 -

0-

15

20

25

30

35

Qtz [modal %] or Qtz [normative Ve]

Figure 3.3.4: Range of feldspar compositions from electron microprobe data within feldspar compositional space, and plagioclase composition versus calculated whole rock quartz content (molecular norm) for the Santa Rosa igneous center.

168 3.4

Pyroxene compositions Pyroxenes occur in the early and intermediate phases of at least to intrusive centers

the Concepcion del Oro and Noche Buena intrusions, as a minor constituent. They have not been observed in the early phases of the Providencia pluton, either because they were not part of the igneous assemblage, or because they were subsequently replaced or subject to alteration. They are present, however, in late phase IV samples SMPW-1 and SMPW-3. They were not encountered in the Santa Rosa igneous center. Most of them are diopsidic to salitic in composition, according to the Deer et al. (1963) classification. In some cases, however, Ca contents narrowly exceeds the upper limit of the field and corresponding to a composition known in earlier classification schemes as "fassaitic" (Troger, 1971). Table 3.4: Average composition and range of pyroxenes for the different intrusions in the Concepcion del Oro area. Sample

Phase Mean and range Mg/Mg-l-Fe [%] Ca [%] Mn [%] Na [%] SMCA-8 Ila 52.42-58.10-63.11 13.94-15.39-16.87 0.42-0.65-0.97 0.17-0.26-0.50 SMCM-6 lib 16.48 0.53 0.10 63.29 SMCM-7 Ilia 58.96-65.48-74.93 13.68-16.26-17.01 0.31-0.58-0.78 0.11-0.23-0.48 SMPW-1a rva 43.84-50.81-54.19 15.35-16.38-25.94 0.42-0.70-1.14 0.32-0.57-1.17 SMPW-3 IVa 43.97-49.67-58.52 14.15-15.93-21.65 0.43-0.76-1.08 0.02-0.54-0.80 SMNC-1 I 23.58-46.40-59.22 14.58-15.75-17.25 0.28-0.36-0.43 0.18-0.47-0.63 SMNC-2 I 24.71-44.47-64.60 16.36-17.23-18.05 0.24-0.44-0.76 0.03-0.23-0.49 SMNA-2 II 23.09-54.18-61.53 14.61-16.01-17.51 0.26-0.48-0.71 0.12-0.30-0.56

Value in italics corresponds to a single analysis, which may not be representative of the overall sample.

169 3.4.1

Concepcion del Oro

Pyroxenes occur in phases I and II of the Concepcion del Oro intrusion, however they could not be analyzed for phase I samples. Phase II samples SMCA-8 and SMCM-6 have pyroxene compositions between augite and salite with Mg/Mg+Fe contents between 52 and 63 weight %. They were also observed in phase III sample SMCM-7a. Pyroxene compositions in this later phase are more Mg-rich, with a compositional range between 59 and 75 weight %. A general overview of pyroxene compositions for samples from the Concepcion del Oro intrusion is displayed on Figure 3.4.1 and Table 3.4.

Pyroxene classification for Concepcion del Oro after Deer et al. (1963) Phases Da (SMCA-8), Ilb(SMCIVM) and Ilia (SMCM-7)

FerroDiopside

Salite

salite

X SMCA-8

+ SMCM-6a SMCM-7a Endiopside

Mg

)-augite

(pfu|

Fe

Figure 3.4.1: Range of pyroxene compositions from electron microprobe data according to Deer et al. (1963) for intermediate and late phases of the Concepcion del Oro intrusion.

170

3.4.2

Providencia

Pyroxenes may occur in the phases I and II but were not detected because they have been replaced or altered. In phase III they appear to be absent both at the macro- and microscopic level. They are present, however, in phase IVa samples SMPW-la and SMPW-3, in which they were analyzed. They are generally augitic to salitic in composition with a Mg/Mg+Fe range between 44 and 59 weight %. At least one analysis point shows excess Ca, which would represent a composition in the so-called "fassaite" field (Troger, 1971). A general overview of pyroxene compositions for samples from the Providencia intrusion is displayed on Figure 3.4.2 and Table 3.4.

Pyroxene classification for Providencia after Deer et al. (1963) Phase IVa samples (SMPW-I a, SMPW-3)

+

FerroDiopside

Salite

salite

XSMPW-la u -I-SMPW-3 Endiopside

Mg

"erro-augite

Ipfuj

Fe

Figure 3.4.2: Range of pyroxene compositions from electron microprobe data according to Deer et al. (1963) for the late phases of the Providencia intrusion.

171

3.4.3

Noche Buena

Pyroxenes in phase I samples SMNC-1 and SMNC-2 show a relatively wide range of compositions with the former displaying a cluster between the augite and the salite field and outliers in the salite and ferrosalite fields at the extreme Ca-rich end of their range; while the latter shows a scatter at the Ca-rich end of the diopside, salite and ferrosalite fields. Phase II sample SMNA-2 does show a similar pattern in composition to that of sample SMNC-1 with a main group of analysis points between the augite and salite fields and more Fe- and Ca-rich outliers. It is suspected that these outliers, which show in all cases a common extreme Ca-rich composition, are possibly the result of metasomatic overgrowth or alteration. A general overview of pyroxene compositions for samples from the Noche Buena intrusion is displayed on Figure 3.4.3 and Table 3.4.

Pyroxene classification for Noche Buena after Deer et al. (1963) Phase I(SIVIISC-1,SMNC-2)an(lphase n(SMNA-2)

+ Diopside

Salite

salite

X SMNC-1 + SMNC-2 SMNA-2a SMNA-2b

Endiopside

Augite

erro-augite

Ipful

Fe

Figure 3.4.3: Range of pyroxene compositions from electron microprobe data according to Deer et al. (1963) for the early and intermediate phases of the Noche Buena intrusion.

172 3.5

Amphibole compositions Amphiboles are a common constituent in intrusives of the Concepcion del Oro area,

particularly in the early phases of the igneous complexes. Compositional data for these reveal calcic amphiboles with average compositions within the edenite field with minor representatives in the hastingsite and pargasite fields (Leake, 1978). Low pressure estimates obtained through application of geobarometric calibration formulas (see section 3.8 on intensive variables), however, show that some of these compositions may be the result of subsolidus formation or re-equilibration, in agreement with field and petrographic evidence. Average composition and ranges are presented in Table 3.5.

Table 3.5:

Average composition and range of amphiboles from electron microprobe data for the different phases of the Concepcion del Oro intrusion;

Average and Average Average and Sample Phase range Sir4i range Fe^'^rei Alf61 SMCA-1 la 6.52-7.50-8.02 0.07 0.00-0.55-1.11 SMCA-5 la 7.39-7.73-8.05 0.05 0.00-0.24-1.24 SMCA-8 Ila 7.09-7.55-7.88 0.05 0.00-0.38-0.62 SMCM-6 lib 6.57-7.60-7.88 0.05 0.09-0.42-1.97 SMCM-7 nia 7.53-7.81-8.00 0.14 0.00-0.09-0.28 SMCM-9 ma 7.36-7.64-7.86 0.03 0.20-0.31-0.44 SMPG-5 m 6.31-6.70-7.27 0.05 0.29-0.50-0.61 SMPW-1 IVa 7.32-7.61-8.05 0.02 0.00-0.38-0.63 SMNA-2 III 7.30-7.70-7.97 0.06 0.00-0.41-1.15 SMNA-4 III 7.54-7.74-7.88 0.14 0.00-0.25-0.54 SMRN-1 I 6.02-6.66-6.83 0.15 0.30-0.44-0.80

Average and range Tirei 0.00-0.05-0.13 0.00-0.02-0.06

Average and Average and Average range Ca-i-Narsi range Na+K[Ai composition 1.81-1.96-2.72 0.01-0.05-0.22 Edenite Edenite 1.48-1.97-2.15 0.00-0.05-0.14

0.01-0.06-0.30

1.81-1.96-2.21

0.02-0.09-0.39

Edenite

0.00-0.02-0.07

1.39-1.89-2.00

0.01-0.02-0.11

Edenite

0.01-0.02-0.04 0.03-0.05-0.08 0.07-0.16-0.22

1.95-2.00-2.18 1.85-1.97-2.00 2.00

0.00-0.03-0.09 Edenite 0.02-0.06-0.14 Edenite 0.21-0.40-0.60 Hastingsite

0.00-0.03-0.09 0.00-0.03-0.11 0.00-0.01-0.05 0.09-0.15-0.42

1.78-1.91-2.00 1.38-1.84-2.47 1.43-1.89-2.00 2.00

0.01-0.12-0.26 0.01-0.05-0.28 0.00-0.03-0.31 0.34-0.46-0.64

Numbers in italics correspond to a small number of analyses and hence may not be representative of the whole sample.

Edenite Edenite Edenite Edenite

174

3.5.1

Concepcion del Oro

Amphibole is one of the more common mafic minerals in the various phases in the Concepcion del Oro intrusive. Its abundance decreases however from the early to the late phases, with biotite becoming more common. Amphibole analyses corresponding to the various phases of the Concepcion del Oro intrusion show them to be Ca-amphiboles mostly of edenitic composition (Leake,

1978). Presence of

Fe^"^ in octahedral

coordination in some cases is lower than A1 contents, while in others surpasses it further distinguishing some analyses as pargasitic and hastingsitic amphiboles, while others still show

alkali

contents

less

than

0.5

per

formula

unit,

defining

some

as

actinolitic/tschermakitic amphiboles. The majority of analyses, however, lie within the edenite field (see Table 3.5 and Figure 3.5.1.1). Halogen contents in the amphiboles of the different phases of the Concepcion del Oro pluton are low, on average around or less than 0.5 weight % fluorine and 0.1% or less chlorine for all phases. There is, however, a certain scatter toward higher CI contents in phase lib sample SMCM-6 and exceptionally in phase III sample SMCM-7. A general overview of amphibole compositions for samples from the Concepcion del Oro intrusion according to the nomenclature of Leake (1978) is displayed on Figure 3.5.1.1, while halogen contents are presented, along compositional ranges within the amphibole quadrilateral, on Figure 3.5.1.2.

Si|4| vs. Fe/Fe+Mg plot for Ca-amphiboles from Concepcidn del Oro

Amphibole compositions for the Concepcidn del Oro intrusion

Phases h (SMCA-1,SMCA-5) and lb (SMCA-8), nomenclature after Leake (1978)

Phases la (SMCA-I, SMCA-S) and lla (SMCA-8)

Silicic fcrrocdcnitc

Ferroedenite

J+

VI

Ferro- Feiro-p irgasitic (Fe
Fem,-p.rga.sile/ Ha-stingsile

X SMCA-1

+ SMCA-5 XSMCA-1 t % 0.4

^

ii#t*

Fcrroan pargas ite / Magnesian bastingsitc

+

Silicic cdenite

Edenite

3+ VI Bdenitic Pargas ic{Fe lI ihomblende

+ SMCA-5

SMCA-8

SMCA-8

-Ml

^

Paigasite/ Magnesiohastingsite Mg

Mg [pfu]

Si(4| vs. Fe/Fe+Mg [riot for Ca-anphiboles from Concepci6n del Oro

Amphibole compositions for the Concepci6n del Oro intrusion

Phases IIb(SMCM-6) andIIIa(SMCM-7, SMCIVf-9),aHer Leake (1978)

Phases lib (SMCM-6) and Ilia (SMCM-7, SMCM-9)

Silicic fcrrocdcnilc

Ferroedcn ite

Ferro;denitic ho: iblende

Ferro-f irgasitic(Fe

.1+

VI
Hastin: sitB(Fe 'Vl'") bombl'

Fenro-pargasicc/ Hastingsite

X SMCM-6

X X

t [fa T 0.4

^

+ SMCM-7a

X

XSMCM-6

r4, XL, -t- ^

Fcrroan pargas ite / Magnesian bastings ite

+ SMCM-7a

SMCM-9a

SMCM-9a

X Silicic edeniic

Figure 3.5.1.1:

Edcnitc

Bdcnitic ho iblcndc

.1+ VI Pargas ic(Fc lI ) hornblende

Pargasite/ Magncsiohastingsite Mg

Mg [pfu]

Range of amphibole compositions compositions according to nomenclature by Leake (1978) and within the amphibole quadrilateral for early and late phases of the Concepcion del Oro intrusion. Empty circles correspond to hastingsitic compositions.

176

Chlorine vs. fluorine plot for the Concepcion del Oro intrusion Eariy phases la (SMCA-1, SMCA-5) and Ila (SMCA-8)

2.0 •-

X

SMCA-1

+

SMCA-5 SMCA-8

— 1:1 line

.0 • - -

0.5

0.0 0,00

0.05

O.IO

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

CI 1%)

Chlorine vs. fluorine plot for the Concepci6n del Oro intrusion Phases lib (SMCM-6) and Ilia (SMCM-7, SMCM-9)

2.0 --

X

SMCM-6 SMCM-7a SMCM-9a

—-1:1 line

0.5

0.0 0.00

0.05

0.10

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

CI [%|

Figure 3.5.1.2:

fluorine vs. chlorine contents for early and late phases of the Concepcion del Oro intrusion.

177

3.5.2

Providencia

Amphibole is a common mafic mineral in the main Providencia intrusive body, and in some of the later phases in the Providencia and Gloria Estela area. Its abundance decreases from the early to the late phases as biotite becomes more common. This is texturally apparent in the Gloria Estela area, where a closely nested series of porphyry phases on the margin of the main intrusion appear to show this progression. Amphibole analyses have been difficult to come by in the analyzed samples of Gloria Estela due to significant alteration in them. Nevertheless analyses corresponding to phases III and IV of the Providencia intrusion show them to be calcic amphiboles either hastingsites or edenites with areas of hastingsitic composition (Leake, 1978). A general overview of amphibole compositions for the late phase samples of the Providencia intrusion is displayed on Figure 3.5.2.1 and Table 3.5.

Halogen contents in the amphiboles of the different Providencia phases are generally low, however they show some unique variations between phase III and phase IV. Phase III displays fairly consistent values of fluorine around 0.5%, however chlorine values show a wide scattering ranging from very low concentrations around a tenth of a percent or less to more than three tenths of a percent. In contrast, phase IV sample SMPW-1 shows a wide scattering from values close to zero to over one percent fluorine contents, while chlorine contents are generally less than three tenths of a percent. Fluorine vs. chlorine contents of amphibole analyses from the later phases of the Providencia pluton, are also presented in Figure 3.5.2.1.

178

Si[4j vs. Fe/Fe+Mg plot for Ca-amphiboles from Providencia Phases lU(SMPG-5) and IVa (SMPW-1, SMPW-3), after Uake (1978)

Silicic ferroedenite

Ferroedenite

-1^

f t

Silicic edenite

Ferro- Fem)-p irgasitic (Fe' A1 ) iblende hombl' nde

)/ Ferro-pargasite / Hastingsite

A

X SMPG-5

O

Ferroan pargasite / Magnesian hastingsite

Edenitic iblende

Pargas ic (Fe

VI


)/

Magne io-has tings itic 3+ l£e_ il ) hornblende

4-SMPW-la SMPW-3

Pargas ite / Magnes iohas tings ite

6.5 Sii'i Ipful

Amphibole compositions for the Providencia intrusion Phases ill(SMP6-5)and IVa (SMPW-1. SMPW-3) Ca X SMPG-5

f SMPW-la

&

8

SMPW-3

Mg

Mg [pful

Fe

Chlorine vs. fluorine plot for the Providencia intrusion Phases III (SMPG-5) and IVa (SMPW-1, SMPW-3)

X

SMPG-5

+

SMPW-la SMPW-3 I;I line

CI 1% I

Figure 3.5.2.1:

Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for the late phases of the Providencia intrusion. Empty circles in the two upper diagrams correspond to hastingsitic compositions.

179

3.5.3

Noche Buena

Amphibole is a common mafic mineral in the intermediate and late phases of the Noche Buena intrusion. In contrast, it is rare in the early phase, occurring as narrow alteration rims to pyroxene crystals, which constitute the main mafic mineral. Amphibole analyses where available only from phases II and III samples corresponding to the area of Aurora. Electron microprobe analysis allows these to be classified as calcic amphiboles of edenitic composition with some hastingsitic patches. A general overview is presented on Figure 3.5.3.1 and Table 3.5. Halogen contents in phases II and III amphiboles from Noche Buena are low, around 0.3 weight % or less for fluorine in sample SMNA-2 and up to 0.5% for sample SMNA4. In contrast, chlorine values are very low for sample SMNA-4, below 0.05% for the most part, but higher for sample SMNA-2, which also displays a significant range in values from less than 0.05% to over 0.3%. Fluorine vs. chlorine contents of amphibole analyses is also presented on Figure 3.5.3.1.

180

$i|4] vs. Fe/Fe+Mg plot for Ca-amphiboles from Noche Buena Phases n(SMNA>2) andIlI($MNA-4), nomenclature after Leake (1978)

Silicic ferro-

Ferro-

Ferro-

edenite

edenite

^denitic

3+ VI Ferro-p irgasitic (Fe
hoi iblende

Ferro-pargasite /

>A1 )

^ Hasiini'site

hombh nde

XSMNA-2a

Ferroan pargasite /

J

Magnesian hastingsite

+ SMNA-4

^ 0.4

Edenite

Silicic edenite

Edenitic

Pargas ic(Fe

ho iblende

3+

VI


Pargasite/

Magne io-has tings itic VI il ) hornblende

Magnesiohastingsite

6.5 Sil'l {pfuI

Amphibole compositions for the Noche Buena intrusion Phases II(SMNA-2)and III(SMNA-4)

XSMNA-2a

•S.

s

Mg

Mg [pfu]

Fe

Chlorine vs. fluorine plot for the Noche Buena intrusion Phases II (SMNA-2) and III (SlVlNA-4)

X

SMNA-2a

+ SMNA-4 1:1 line

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Cl I /o )

Figure 3.5.3.1:

Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for intermediate and late phases of the Noche Buena intrusion. Empty circles correspond to hastingsitic compositions.

181

3.5.4

Santa Rosa

Amphibole is the predominant mafic mineral in the Santa Rosa igneous center. Amphiboles analyses show them to be hastingsitic amphiboles with average halogen contents around 0.3 weight % F and about 0.06 weight % CI. A general overview of their composition is displayed on Figure 3.5.4.1 and Table 3.5.

182

Si|4| vs. Fe/Fe+Mg plot forCa-amphiboles from Santa Rosa Sample (SMRN-l), nomenclature after Leake (1978)

Silicic ferro-

Ferro-

Ferro-

edenite

edenite

jdenitic

Ferro-p irgasitic(Fe

3+

VI
Hastinj sitic(Fe'">Al")

ho: iblende

Feto-pargasite/ Hastingsite

hombl< nde

m o

0

^ o

_P'

Ferroan pargas ite / Magnesian hastingsite

Silicic edenite

Edenite

Edenitic hoi iblende

8.0

7.5

7.0

Pargas ic(Fe

3+

VI
Magne io-has tings itic 3+ VI (Fe > il ) hornblende

6.5

Pargasite/ Magnesiohas tings ite

6.0

S.i

5.0

Si »l Ipful

Amphibole compositions for the Santa Rosa igneous center sample SMRN-1 Ca

Mg

Mg [pfu]

Fe

Chlorine vs. fluorine plot for the Santa Rosa igneous center Sample SMRN-1

2.0

X

SMRN-1

— 1;! line

0.5 --

0.0

0.05

0.10

0.20

0.25

0.30

0.35

0.45

0,50

0.55

CI 1%}

Figure 3.5.4.1:

Range of amphibole compositions according to nomenclature by Leake (1978), within the amphibole quadrilateral, and fluorine vs. chlorine contents for the Santa Rosa igneous center. Empty circles correspond to hastingsitic compositions.

183

3.6

Biotite compositions

Biotite is a common mafic minerals in the different intrusives of the Concepcion del Oro area. Hand sample and petrographic examination shows a general trend from hornblende-predominant to biotite-predominant composition (see Tables 2.3.1.1 through 2.3.1.4). Biotite analysis reveal them to be generally Al-poor biotites of intermediate composition between phlogopite and annite (60% and 70% phlogopite end-member component), but with a tendency toward the phlogopitic end-member. Table 3.6 summarizes average biotite compositions of samples from the different intrusions. It includes fluorine and chlorine average contents, as well as calculated estimates for intensive variables such as oxygen and water fugacity. Generally, fluorine appears to increase in concentration, as well as in the spread of values from the early to the late phases of intrusion at Concepcion del Oro and Providencia.

184

3.6.1

Concepcion del Oro

Biotite is a common mafic minerals in the various phases in the Concepcion del Oro pluton, particularly in the late phases. Biotite analysis correspond to Al-poor biotites of intermediate composition between phlogopite and annite, but with a tendency toward the phlogopitic end-member (60% to 80% phlogopite component). The majority lie between the 60% and 70% phlogopite component. Specifically, main phase lib sample SMCM-6 shows a more Mg-rich composition (71% average phlogopite component compared to averages between 65% and 68% phlogopite component), compared to early and late phases. In general terms, the late phases show higher F contents (between 0.7% and 1%) relative to the early phases, with two peaks: in phase lib sample SMCM-6 and in the late aplite sample SMCM-11. By comparison, average chlorine contents remain at similar concentrations between 0.3 and 0.4 weight % with only a light increase from early phase la to a maximum in phase Ila sample SMCA-8 and a slight decrease in the late aplite. A general overview of biotite compositions including halogen contents for samples from the Concepcion del Oro intrusion is displayed on Figure 3.6.1 and Table 3.6. Some recorded zonation patterns reveal generally a decreasing Mg content from core to rim, that is often, but not always accompanied by an increase in Fe content. Along with a decrease in Mg, a decrease in Ti content can be observed. A decrease in CI as a result of Mg-Cl avoidance (Munoz,

1984) was not observed.

Instead relatively constant

concentrations in CI appear to be maintained from core to rim, variations within the crystal notwithstanding.

Chlorine vs. fluorine in biotites from the Concepcion del Oro i

Classification of biotites from the Concepcion del Ore intrusion

Early phases la (SMCA-1, SMCA-5) and Ila (SMCA-8)

Early phases la (SMCA-1, SMCA-5) and lla (SMCA-8) Siderophi-llite

X

SMCA-t

+

SMCA-5a

XSMCA-I logopke

Al- AnnBe

SMCA-K + SMCA-5 Qaverage detection limit F average detection limit

SMCA-8

Ph ogopite

Annite 0

0.1

0.

CI 1%)

Classification of biotites from the Concepcion del Oro intrusion

Chlorine vs. fluorine in biotites from the Concepci6n del Oro intrusion

Phases l i b (SMCM-6), Ilia (SMCM-7, SMCM-9) and late aplite (SMCM-11)

Phases llb(SMCM>6), Ilia (SMCM-7, SMCM-9) and late aplite nib(SMCM-ll)

Siderophyllite . . _

0.9 O.X

X

SMCM-6

-f-

SMCM-7a

XSMCM-6 0.7 |0.6

-»-SMCM-7a

SMCM-9a

A^Pl lo^opite

Al- Annide

|o,5

-

S

SMCM-9a

-04

-

0.2

CI average detection limit F average detection lirmt

-SMCM-lla

X

SMCM-I

0.1 H-

Annite 0

0.1

Figure 3.6.1:

02

03

04

0.5 X Phloitopite

06

07

OX

Ph ogopite

—+fl—-f

09 CI %

Range of biotite compositions from electron microprobe data according to nomenclature by Gunow et al. (1980) and halogen content, for early through late phases of the Concepcion del Oro intrusion.

186

3.6.2

Providencia

Biotite is also common in the different phases in the Providencia pluton. Its frequency increases from the early to the late phases as amphibole becomes rarer. Biotite analyses for the various intrusion phases show the early phases to contain Al-poor biotites of intermediate composition with a tendency toward the phlogopitic end-member. The majority contain between the 60% and 75% phlogopite component. The late phase IV samples, however, present significantly more aluminous and less Mg rich biotites with around 50% to 60% phlogopite component and a wide range in A1 contents. A significant increase in F contents (from 0.2 to 0.8 weight %) occurs in the early phases. The late phases, however, fluctuate between 0.6 and 1 weight % F. By comparison, average chlorine contents remain at relatively constant concentrations through phase III sample SMPG-5, between 0.2 and 0.3 weight %. Phase IV samples, however, show a significant decrease to less than 0.1 weight %. The observed differences in aluminum and halogen contents were unexpected and might have broader implications with respect to magmatic evolution in the Concepcion del Oro area. A general overview of biotite compositions is displayed on Figure 3.6.2 and Table 3.6. Recorded zonation patterns reveal variable patterns in Mg content from core to rim, with Fe often, but not always, mirroring the Mg content in a given crystal. Both Ti and CI contents show relatively constant concentrations from core to rim.

Classification of biotites from the Providencia intrusion

Chlorine vs. fluorine plot in biotites from the Providencia intrusion

Early phases Ila (SMPG-I), lib (SMPG-2) and lie (SMPG-3)

Early phases Ila (SMPG-1), lib (SMPG-2) and lie (SMPG-3)

Siderophj'llj

XSMPO-1

|0.6 -

SMPG-3

logopite

|D.5 -

+ SMPG-2 CI average detection limit F average detection limit

SMPG-3

%

ogopite CI 1% I

Chlorine vs. fluorine plot in biotites from the Providencia intrusion Main and late phases ill (SMPG-5), and IVa (SMPW-1, SMPW-3)

Classification of biotites from the Providencia intrusion Main and late phases 111 (SMPC-5), and IVa (SMPW-l, SMPW.3) Sideroph; 'llite

SMPG-5 SMPW -1

XSMPC.-5 Al-Ph Ipgopite

Al- Anni{e

SMPW-3

:

CI average detection liiTiit F average detection limit

SMPW-3

ogopite

Annite

Phlogopllc

Figure 3.6.2:

CI 1% 1

Range of biotite compositions from electron microprobe data according to nomenclature by Gunow et al. (1980) and halogen content, for early through late phases of the Providencia intrusion.

188

3.6.3

Noche Buena

Biotite is rare in the early phase of the Noche Buena intrusion, but becomes more common in the intermediate phases and late phases. Its frequency increases from phase II to phase III; the late phases, however, appear to be devoid of biotite. Biotite analyses corresponding to phase II could be gathered only from sample SMNA-2 in part due to alteration. From the limited data, these are Al-poor biotites with an average composition for the two SMNA-2 samples between 66% and 84% phlogopite component. The more Mg-rich analysis points correspond to the more altered sample SMNA-2b. Halogen contents in sample SMNA-2 are about 1 weight % F and 0.2 weight % CI on average. An overview of biotite composition for sample SMNA-2 from Noche Buena is displayed on Figure 3.6.3 and Table 3.6.

Classification of biotites from the Noche Buena intrusion

Chlorine vs. fluorine plot in biotites from the Noche Buena intrusion

Phase II (SMNA-211, $MNA-2b)

Phases II (SMNA-2a, SMNA-2b)

-

-

X

X

|0.6

It).5

SMNA-2b G average

XSMNA-2a SMNA-2b

logopite

SMNA-2a

detection limit -

X X

F average

X X

-

detection limit

ogoprte 0

0.3

O.l

0.4

0.5

0.6

0.9

0.7

Figure 3.6.3;

1

a 1% I

X PhkoBopik

Range of biotite compositions from electron microprobe data according to nomenclature by Gunow et al. (1980) and halogen content, for phase II of the Noche Buena intrusion.

Classification of biotites from tlie Santa Rosa igneous center

Chlorine vs. fluorine plot in biotites from the Santa Rosa igneous center

Sample SMRN-1

Sample SMRN-1

Sideroph;/I

CI average detection limit

logopite

F average detection liimt

ogopite 0

0.1

0.2

0.3

0.5

X Pklogopiir

Figure 3.6.4:

0.6

0.7

O.X

0.9

ai%i

Range of biotite compositions from electron microprobe data according to nomenclature by Gunow et al. (1980) and halogen content, for sample SMRN-1 of the Santa Rosa igneous center.

190

3.6.4

Santa Rosa

Biotite is common in the Santa Rosa igneous center, along with hornblende. Electron microprobe analyses of biotites show these to be relatively Al-rich biotites of intermediate composition between phlogopite and annite. Most, if not all, lie between the 50% and 60% phlogopite end-member component. Halogen contents is around 0.5 weight % F and 0.1 weight % CI. A general overview of biotite chemistries for samples from the Providencia intrusion is displayed on Figure 3.6.4 and Table 3.6. Some recorded zonation patterns reveal variable patterns in Mg content from core to rim, with Fe following, but not mirroring the Mg content in a given crystal. Both Ti and CI contents show relatively constant concentrations from core to rim, despite fluctuations within the crystal.

191

3.7

Fe-Ti-(Mn) oxide compositions

Magnetite appears to be the most common accessory opaque in the different intrusions of the Concepcion del Oro area. There is, however, indirect petrographic evidence of the presence of ilmenite from observed sphene overgrowths and in some cases intergrowths on opaques. The use of the electron microprobe allowed the confirmation as well as the analysis of ilmenite, mostly as relict inclusions in magnetite. Magnetites have a narrow range of chemical variation, showing only trace amounts of Ti or other elements. In contrast, ilmenites have variable and, in cases, noticeable substitution of Mn for Fe, anywhere from traces to 50 percent, suggesting some of them are intermediate members between ilmenite and its Mn-analog pyrophanite. Presence of ilmenite-pyrophanite solid solutions seem to occur in all phases of the different intrusions, with the exception of the Providencia pluton. No clear pattern in Mn contents can be recognized from the rather scant data. Table 3.7 summarizes magnetite and ilmenite compositions encountered in intrusions of the Concepcion del Oro area.

192

3.7.1

Concepcion del Oro

Magnetite occurs in the different phases of the Concepcion del Oro pluton as accessory mineral, while ilmenite is present mostly as relict inclusions in magnetite. Magnetites have a narrow range of chemical variation, showing only trace amounts of Ti or other elements. However, ilmenites have noticeable manganese contents. The majority of analysis points that appear to extend beyond the ilmenite-ulvospinel field to Ti-rich compositions do so because of the extensive substitution of Fe^"^ by Mn^"^. Maxima in manganese contents occur in one of phase I samples (sample SMCA-1), in phase lib sample SMCM-6 and particularly in the late aplite sample SMCM-11. Manganese content appears to increase from phase I sample SMCM-5 through phase Ila sample SMCA-8 to phase lib sample SMCM-6. Analyses in sample SMCM-11, span the complete range between ilmenite and pyrophanite. Table 3.7 and Figure 3.7.1 give a general overview of magnetite and ilmenite compositions and extent of manganese substitution in ilmenites of the Concepcion del Oro intrusives.

MagnetKe,ilmenite compositions in the Concepci6n del Oro intrusion

Ilmenite compositions in the Concepcidn del Oro intrusion

Phases la (SMCA-1, SMCA-5) and lla (SMCA-8)

Early phase la (SMCA-1, SMCA-S)

X SMCA-1 + SMCA-5 SMCA-8

O SMCA-1

— ilmenite-hematite series

O SMCA-5

— ulvdspinel-oiagnetite series

SMCA-8

pyrophanite

O SMCA-1

O SMCA-5 jivospinel

SMCA-8

ulvospirtel

[%1

Magnetite,ilmenHe compositions in the Concepcibn del Oro intrusion

Ilmenite compositions in the Concepci6n del Oro intrusion

Phases lib (SMCM-6), Ilia (SMCM-9) and lllb (SMCM-11)

Phases lla (SMCA-8) and lib (SMCM-6)

TH* X SMCM-6 + SMCM-9a SMCM-11a

O SMCM-6

ilmenite-hematite series

O SMCM-9a

ulv5spinel-magnetite series ilmenite

pyrophanite

O SMCM-6

SMCM-lla

o SMCM-9a ulvospinel

Figure 3.7.1:

SMCM-11a

ulvospinel

Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^"^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Concepcion del Oro intrusion.

194

3.7.2

Providencia

Accessory magnetite in the Providencia intrusion have a narrow range of chemical variation with only trace amounts of Ti or other elements. Dmenites have been found only in phase Ila sample SMPG-1 and in late phase IV sample SMPW-1. Unlike other analyzed ilmenites in the Concepcion del Oro area, the compositions that do not fall into the ilmenite-ulvospinel field do not show any appreciable substitution by manganese. In the case of phase IV sample SMPW-1, the few analyzed points show a noticeable Ti enrichment, Mn, while in phase Ila sample SMPG-1, there appears to be a depletion in that element. It is unclear in both cases, whether these are indeed homogeneous mineral phases. A general overview of magnetite and ilmenite compositions are presented in Table 3.7 and Figure 3.7.2.

Magnetite and ilmenite compositions In tlie Providencia intrusion

Ilmenite compositions in tlie Providencia intrusion

Phases lla (SMPG-1), III (SMPG-5) and IVa (SMPW-1, SMPW-3)

Phases lla (SMPG-1) and IVa (SMPW-1)

I'** X SMPG-1 + SMPG-5 SMPW-1 O SMPG-1

- SMPW-3

SMPW-1

ilmenite-hematite series ^

ilmenite /

^

pyrophanite

ulv6spinelHnagnetite series O SMPG-1

/

ulvospinel /

SMPW-1

ulvt^pinel

^ hematite

Figure 3.7.2:

Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Providencia intrusion.

Magnetite and ilmenite compositions in the Noche Buena intrusion

Ilmenite compositions in the Nociie Buena intrusion

Phase 1 (SMNC-1), II (SMNA-2) and III (SMNA-4)

Phase I (SMNC-1). 11 (SMNA-2) and III (SMNA-4)

Th

Tl^ X SMNC-1 + SMNA-2a SMNA-2b SMNA-4

O SMNC-1

ilmenite-hematite series

oSMNA-2a SMNA-2b

ulvDspinel-magnetite series 5? —

/ ilmenite. ^

P

\ \

0 SMNC-1

\ ul\6spinel /

pyrophanite

ilmenite

0 SMNA-2a SMNA-2b \

SMNA-4

ulsospinel

hematite Fe'*

Figure 3.7.3:

SMNA-4

Fe'*

m

Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the different phases of the Noche Buena intrusion.

196

3.7.3

Noche Buena

Magnetite occurs as an accessory in the different phases of the Noche Buena intrusion. Magnetites belonging to phase I sample SMNC-1 show the widest range of variation compared to phase II sample SMNA-2 and phase III sample SMNA-4. They appear to be relatively enriched in Fe^"^ and in either Ti'^"^ or Si'^"^. Phases II and III samples conversely have a narrow range of chemical variation, showing only trace amounts of Ti or other elements. Trace amounts of ilmenite have also been found in all three samples analyzed. The few analyzed points show pyrophanite substitution between

6% and 11%, comparable to samples in the Concepcion del Oro pluton. Figure 3.7.3 and Table 3.7 give a general overview of magnetite and ilmenite compositions for the Noche Buena intrusion.

197

3.7.4

Santa Rosa

Accessory magnetite in the Santa Rosa igneous center show small but noticeable amounts of mainly Ti substitution, less than 1%. Trace amounts of ilmenite have also been found. The few analyzed points show noticeable Ti depletion, revealing a composition closer to ulvospinel rather than ilmenite, with minor Mn substitution up to 3% percent. Figure 3.7.4 and Table 3.7 give a general overview of magnetite and ilmenite in the sample from the Santa Rosa igneous center. Magnetite and ilmenite compositions in tiie Santa Rosa igneous center Sample(SMRN-1) Tl'^

X SMRN-1 ilmenite-hematite series ulvospinel-magnetite series

5* 24 H

/

V \ \ \

ilmenite /

/ ulvbspjnel Cf

/

o SMRN-1 \

. hematite

«XX Fe'*[%l

Fe®*

Ilmenrte compositions in the Santa Rosa igneous center Sample(SMRN-1) Tl^

ilmenite

pyrophanite

s_

H ulvOspinel /o

Figure 3.7.4:

Magnetite and ilmenite compositions within Fe-Ti compositional space, with Fe^^ recalculated from total Fe, as well as ilmenite compositions within Fe-Ti-Mn compositional space for the Santa Rosa igneous center.

198

3.8

Intensive variables

Estimates for temperatures and pressures, as well as volatile contents have been derived from electron microprobe analysis of mineral constituents in the different phases of the intrusions in the Concepcion del Oro area.

Rims of plagioclase grains in contact with interstitial K-feldspar were analyzed in order to derive crystallization temperatures, after Stormer (1975), in the various igneous phases. These calculations are, from a textural point of view, minimum estimates. Since the geothermometric calculation is pressure dependent, either values from Al-inhomblende geobarometry, or a standard value of Ikbar by inference from the nearest, most complete regional stratigraphic column (Mapes Vazquez et al., 1964) were used. In the first case, if the temperature-independent geobarometric calibration by Schmidt (1992) is used, the calculation of a temperature estimate is a single step process. However, if the temperature-dependent geobarometric calibration of Anderson and Smith (1995) is used, geobarometric and geothermometric estimates converge iteratively to a set of best values. The temperature differences due to the use of one or the other calibration are in the range of a few degrees and, hence, negligible.

Pressure estimates obtained using Al-in-amphibole calibrations by Schmidt (1992) and Anderson and Smith (1995) were calculated with and without the use of conditions set to screen the data. Normalized amphibole data were screened by setting thresholds on the presence of Ti and Fe^"^, as well on the proportion of total Fe to the sum of Fe and Mg for analysis points indicative of unaltered or "primary" compositions before using the

199

calibration equations. These are temperature dependent and, as mentioned in the previous paragraph, the values arrived to are the result of an iterative process.

Biotite data were also used to obtain oxygen and water fugacity estimates, based respectively on the work by Wones and Eugster (1965); Wones et al. (1971) and Wones (1981), as well as the thermodynamic calculation program SUPCRT (Johnson et al., 1992). The oxygen fugacity estimates were arrived at by extrapolating for the average temperatures and pressures obtained from feldspar thermometry and Al-in-hornblende barometry (see previous paragraph). In the case of the latter estimates, several pressure estimates obtained from either relict, interior as well as rim amphibole compositions were listed for some samples for comparative purposes.

200

3.8.1

Feldspar geothermometry

As mentioned in the introductory paragraph, temperature estimates were derived from plagioclase rims in contact with interstitial K-feldspar. The plagioclase rims may be primary or secondary overgrowths, which in applying the geothermometric calibration by Stormer (1975), constraint the results to reflect either final crystallization or subsolidus re-equilibration temperature estimates. Plagioclase rim/matrix K-feldspar pairs in samples from the Concepcion del Oro intrusion yielded temperature estimates ranging from 584°C to 823°C, with values generally between 700°C and 800°C. The higher estimates correspond to the early phases la, lib and phase Illb aplite (samples SMCA-5, SMCM-6 and SMCM-11), while temperatures below 700°C (and in one case below 600°C) occur in phase la sample SMCM-1 and phase nia samples SMCM-7 and SMCM-9. Textural as well as chemical information suggests subsolidus re-equilibration of the feldspars in the latter samples. Temperature estimates between 600°C to 1041°C were derived from analyzed feldspar pairs in the Providencia intrusion. The higher estimates correspond to phases lie and IV (samples SMPG-3, SMPW-1 and SMPW-3), while temperatures below 700°C were calculated for phases III and V (samples SMPG-5 and SMPV-1 respectively). In samples SMPG-1 and SMPG-2, belonging to phase II, the average plagioclase composition is anorthitic. This, and the general degree of alteration observed, makes the geothermometric calculation for the first one impossible and the obtained temperature estimate for the second sample, based on a single pair between K-feldspar and anorthitic

201

plagioclase, questionable. Temperature estimates below 700°C in samples SMPG-5 and SMPV-1 are likely the result of subsolidus re-equilibration as well. Viable feldspar pairs for geothermometric calculation were found in phases I, II and III from the Noche Buena intrusion. The two earlier phases yield nearly identical temperature estimates above 800°C (831°C in sample SMNC-1, and 830°C in sample SMNA-2 at 1 kbar standard pressure), while phase III sample SMNA-4 gives a temperature below 700°C. By comparison with results from the two previous intrusions, as well as from textural and chemical information, suggests subsolidus re-equilibration of the feldspars for the latter sample. The available plagioclase/K-feldspar pairs in the sample from the Santa Rosa igneous center yield temperatures between 875°C and 1252°C, averaging 1039°C. While the highest value is somewhat questionable, lack of significant alteration, both at the macroscopic and microscopic levels, suggest the estimates are likely to be credible.

While the calibration underlying these estimates is pressure dependent, both depth of emplacement derived from the regional stratigraphy and textural constraints from the exclusive utilization of plagioclase rims in contact with interstitial K-feldspar allows the reasonable assumption of a standard pressure estimate of 1 kbar for the calculations. Nevertheless, thermometric estimates based on pressure estimates derived from Al-inhornblende geobarometry, in the samples for which they are available, are also listed.

202

Table 3.8.1: Average

composition

of

plagioclase/K-feldspars

pairs

used

for

geothermometric calculations after Stormer (1975), and range of resulting temperature estimates as a function of available pressure data from Al-inhornblende geobarometric calibrations (Schmidt, 1992) for phases of the different intrusive centers in the Concepcion del Oro area. Mean and range of Sample

Phase plagioclase [Xah]

Average

Mean and range of

Average

composition'

T [°C]^

SMCA-1

la

2.02-16.20-37.87

Oligoclase

K-feldspar [Xor] 1.48-73.60-94.07

SMCA-5 SMCA-8

la Ila

34.48-42.35 10.71-23.09-33.02

Andesine Oligoclase

88.21 77.69-86.59-92.22

SMCM-6

lib

14.03-42.09-57.07

Andesine

76.86-86.73-91.76

SMCM-7 SMCM-9

llla Ilia

9.32 20.23

Albite

88.86

Oligoclase

96.26

SMCM-11

Illb

21.13

Oligoclase

82.80

SMPG-2

lib

SMPG-3 SMPG-5

IIc III

95.44 9.75

Anorthite Albite Albite

51.29-85.78 86.07-91.72-96.95

1.19- 5.76- 9.93

(almost a pair)^ 36.73

SMPW-1 SMPW-3

-25.97 2.15

Andesine Oligoclase

11.72-

SMPV-1

IVa IVa V

SMNC-1

la

17.52-

SMNA-2

II

5.65-28.58-51.94

Oligoclase/ Labradorite Oligoclase

SMNA-4

III

5.12-18.57-34.61

Oligoclase

SMRN-1

I

15.06-22.44-27.09

Oligoclase

2.12- 2.99- 4.96 -56.87

Albite Albite

99.63

85.93 47.11-

-53.52 95.81

690 (0.62) 694 (1 kbar) 785 749 (0.73) 752 (1 kbar) 848 (3.11) 835 (1.95) 823 (1 kbar)

669 584 775 738 914 674 (5.03) 659 (3.32) 641 (1.36) 637 (1 kbar) 808 (1 kbar) 1041

854

17.02-75.03-95.58

600

74.34-83.52-95.24

831

74.34-83.52-95.24

832(1.15) 830 (1 kbar) 92.53-93.75-94.82 664 (4.21) 635 (1 kbar)

43.77-60.83-71.25

1085 (4.06) 1039 (1 kbar)

Compositions in italics are likely to correspond to altered/replaced plagioclase margins. Estimates in italics were derived from a single feldspar pair. ^ Feldspar compositions are immediately inside the border.

203

3.8.2

Amphibole geobarometry

Pressure estimates were derived from amphibole analysis through different Al-inhornblende geobarometric calibration methods (Hammarstrom and Zen, 1986; Hollister et al. 1987; Johnson and Rutherford, 1989; Schmidt, 1992; and Anderson and Smith, 1995), with variable results (see appendix section on amphibole geobarometry). Ultimately calibrations by Schmidt (1992) were used, but Anderson and Smith (1995) calibrations were also tabulated for comparative purposes. Following Anderson and Smith (1995), and Anderson (1996) general discussion on different thermobarometric calculation methods, threshold conditions were set to screen for analysis points indicative of unaltered or "primary" igneous amphiboles. Ultimately, however, the calibrations of Schmidt (1992) were used without application of threshold conditions. Even though in using unfiltered data the resulting estimates would be incorrect sensu stricto, where sufficient data were present in both unfiltered and filtered data, the differences between the former and the latter were found not to be so significant. In other cases, however, filtering the available data left no estimates. In using them sensu latto, these data allow some useful qualitative information about the local conditions of intrusion in the Concepcion del Oro area to be gained and comparisons to be made. Pressure estimates for samples of the different intrusions in the Concepcion del Oro area are presented in Table 3.8.2. The results obtained from the application of Al-in-hornblende geobarometry for the Concepcion del Oro pluton, are in most cases below the lower limit of 2 kbars for which the calibration is applicable. A single value around 3 kbars is within the applicable range

204

for phase lib sample SMCM-6. The majority of data points lie at less than 1 kbar, which, together with the spotty nature of them, suggest the importance of subsolidus reequilibration at shallow depth (see Table 3.8.2). For the Providencia intrusion pressure estimates could only be obtained for phase III. The results obtained under without application of screening conditions indicate for phase III sample SMPG-5 a cluster of values around 3.3 to 3.5 kbar in edenites with one value at 4.3 kbars; a few values in hastingsitic patches within edenites that yield estimates between 4.4 and 5.3 kbars; and two rim values in edenites plus an additional one from a small edenite crystal indicating pressures between 1 and 1.5 kbars using the Schmidt (1992) calibration. Comparison with data for which screening conditions were employed, yielded only marginally different results (see Table 3.8.2). The values obtained underscore the importance of textural context and subsolidus re-equilibration. Pressure estimates from phases II and III samples of the Noche Buena intrusion, could not be obtained under the more rigorous screening conditions of Anderson and Smith (1995). By eliminating these limiting conditions a few estimates below the range of applicability for the calitbrations were obtained. Sample SMNA-2 (phase II) shows a single value of 0.45 kbars, while sample SMNA-4 (phase III) shows a single value of 0.33 kbars (see Table 3.8.2). Pressure estimates for the Santa Rosa igneous center yield results only for the Schmidt (1992) calibration. Values range from 3.1 kbars to 6.6 kbars, however averages from different edenite crystals are generally between 3.7 and 3.8 kbars, while a hastingsitic patch in edenite shows a single value close to 5 kbars and a single hastingsite

205

crystal gives an average slightly over 6 kbars (see Table 3.8.2). Because of the relative lack of alteration in the sample, textural context and subsolidus re-equilibration appear not to play such an important role, suggesting a mid-crustal residence for the magmas in the Concepcion del Oro area prior to ascent and emplacement of the different intrusive phases (see Figure 3.8.2). Pressure estimate values for intrusions in the Concepci6n dei Oro area calculated according to Schmidt (1992) calibrations on unrestricted data

0

E w4

a

I 9

T"

Figure 3.8.2: Comparative plot of pressure estimates obtained from Al-in-homblende geobarometer calibrations by Schmidt (1992) for different intrusive phases in the Concepcion del Oro area. Pressure estimates from edenitic amphiboles are represented as bars, while estimates from hastingsitic amphiboles are represented by open circles.

206

Table 3.8.2: Pressure estimates in kilobars from Al-in-hornblende geobarometer calibrations for the different intrusives in the Concepcion del Oro area, in parenthesis number of data points obtained. Amphibole Textural Sample Phase type context SMCA-1 la Edenite rim; T=690°C core interior SMCA-5 la Edenite rim SMCA-8 Ila Edenite core; Edenite rim SMCM-6 lib Edenite rim T=823°C uear rim interior SMCM-9 Ilia Edenite interior T=584°C SMPG-5 III Edenite single crystal T=659°C Hastingsite relict within; Edenite core average Hastingsite relict within Edenite rim value; Hastingsite core average Edenite core value Edenite rim value; Edenite small crystal SMNA-2 II Edenite altered relict T=830°C SMNA-4 III Edenite interior zone T=635°C SMRN-1 I Edenite single crystal T=1039°C Hastingsite relict within; Hastingsite single crystal; Edenite single crystal; Edenite single crystal

Schmidt (1992) Anderson & Smith (1995) 1 2 12 0.27(2) 0.35(2) NA NA 0.68(1) 0.53(4) 0.60(1) 0.62(4) 0.38(1) 0.47(1) NA NA <0.09(1) NA NA NA 0.73(1) NA NA NA 0.26(1) NA NA NA 0.26(1) NA NA NA 1.95(1) NA NA NA 0.55(1) 3.11(1) NA NA 0.12(1) 0.25(1) NA NA 3.33(8) 5.31(2) 3.30(3) 4.37(1) 1.45(1) 5.09(2) 4.29(1) 1.08(1) 1.54(1) 0.45(1)

3.33(8) 5.19(1) 3.30(3) 4.37(1) 1.45(1) 5.11(1) NA 1.08(1) 1.54(1) NA

3.45(8) 5.46(2) 3.42(3) 4.51(1) 1.52(1) 5.25(2) 4.42(1) 1.15(1) 1.62(1) NA

3.45(8) 3.35(1) 3.42(3) 4.51(1) 1.52(1) 5.26(1) NA 1.15(1) 1.62(1) NA

0.33(1)

NA

0.40(1)

NA

3.75(13) 4.91(1) 6.06(6) 3.77(19) 3.80(16)

3.60(8) NA 6.06(6) 3.74(6) 3.74(6)

NA NA NA NA NA

NA NA NA NA NA

Entries separated by semicolon in the textural context column indicate lack of direct textural relation, corresponding to different analyzed crystals. Numbers in italics in the different calibration columns correspond to results that lie below the range of pressures for that calibration. ' Left columns for each calibration show data obtained without the application of any filter while the right columns 6 show data for analysis points containing Ti[6]>0.118 and fulfilling Fe^V(Fe^"^+Fe^'^)>0.2, 0.4
207

3.8.3

Volatile contents

Halogen contents in mafic minerals associated with mineralized suites have been long considered to be diagnostic of the mineralizing potential of the associated intrusions (Jacobs, 1976; Jacobs and Parry, 1976; Munoz, 1984; Lang, 1998; Mazdab, 2002; among others). In that context fluorine and chlorine contents for amphiboles and biotites in the different phases of igneous centers in the Concepcion del Oro area are presented. Analyses of the biotites were also evaluated to obtain oxygen fugacity estimates for the different intrusive phases, based on the reaction: annite + V2O2 = K-feldspar + magnetite + water, after work by Wones eind Eugster (1965). To that effect, logK values of the reaction were calculated for temperatures between 400 and 1000°C and pressures between 0.5 and 5 kbar using the program SUPCRT92 (Johnson et al., 1992). The oxygen fugacity estimates were arrived at by extrapolating for the average temperatures and pressures obtained from feldspar thermometry (Stormer, 1975) and Al-in-homblende barometry (Schmidt, 1992). In addition oxygen fugacity values were calculated for a standard pressure of 1 kbar, based on the regional stratigraphic column, for samples lacking Al-in-hornblende pressure estimates. These were also used as a general baseline for comparative purposes between the different phases of an intrusion as well as between different intrusions. The resulting values were compared to different buffers: wiistitemagnetite, fayalite-magnetite, nickel-bunsenite and magnetite-hematite. Water fugacities were calculated, following work by Wones et al. (1971) and Wones (1981). Finally, calculated fugacities for fluorine, chlorine and water were also used for comparative purposes. The classification of Ague and Brimhall (1988b) for the Sierra

208

Nevada batholith was used to obtain supporting data on possible magma sources for the different intrusive phases, particularly for the later phases or for samples that were not analyzed through major and trace geochemistry because of alteration. Fluorine and chlorine intercept values, following the work of Munoz (1984), were derived as a means to infer possible parallels to porphyry copper and molybdenum deposits.

Table 3.8.3; Average composition and range, halogen contents, oxygen and water fugacity estimates from biotites of the different intrusives of the Concepcion del Oro area, along with temperature and pressure estimates used for their calculation. Mean/range of biotite compositions, given as Average Average Phase Xphi-XAnn phlogopite-annite pairs [%] F [%] CI [% logf02 la f62.04-16.52V('67.99-24.63V('72.85-28.80) 0.48' 0.29 -17.40 -17.67 (Ikbar) SMCA-5 la ('60.16-21.84)-('64.98-25.60)-('71.90-37.28) 0.55' 0.29 -15.40 SMCA-8 Ila f63.09- 3.23Vf66.31-23.88Vf93.64-30.45) 0.96' 0.41 -15.89 -16.12 (Ikbar) lib ('57.87-16.92Vf71.22-20.75V('78.43-33.00) 0.74' 0.35 -15.05 SMCM-6 -14.78 -14.61 (Ikbar) SMCM-7 Ilia a4.08-15.28Vf66.29-22.41 Vf81.34-85.92) NA 0.36 -18.42 SMCM-9 ^ Ilia f63.13-23.31 Vr64.61 -24.66U67.36-26.88) 0.72 0.32 -21.16 SMCM-11 Illb (62.09-19.34)-(65.36-23.0lU72.55-34.25) 0.96' 0.26 -15.61 SMPG-1 Ila {'60.32-21.42)-('62.06-23.99V('65.27-27.84) 0.22 0.29 NA lib f62.55-20.96)-('64.47-22.28Vr67.58-23.7n 0.66 0.27 -16.41 SMPG-2 SMPG-3 lie f70.74-14.97)-('72.14-15.62)-('74.94-16.63) 0.83 0.20 -14.67 SMPG-5 III f58.58-15.04Vr70.62-39.29Vf75.98-25.30) 0.78 0.20 -19.90 -19.08 -18.18 -19.43 (Ikbar) rva f51.74-11.83W58.57-23.03Vf66.51-28.67) 0.96 0.06 -10.81 SMPW-1 rva (55.56- 0.34Vf57.57-15.11Vr58.92-81.92) 0.58 0.07 -14.00 SMPW-3

Sample SMCA-1

Average logfnao 1.59 1.43 (Ikbar) 2.02 2.08 1.94 (Ikbar) 1.43 1.65 1.80 (Ikbar) 1.11 0.68 1.81 NA 1.60 1.46 0.16 0.70 1.31 0.71 (Ikbar) 2.75 1.55

Average T, P [°C]^ [kbars]' 690 0.62 694 785 1.0 749 0.73 752 848 3.11 (interior) 835 1.95 (rim) 823 669 1.0 584 1.0 775 1.0 NA NA 738 1.0 820 1.0 674 5.03 (core, H) 659 3.33 (core, E) 641 1.36 (rim, E) 637 1041 1.0 854 1.0

Table 3.8.3: (continued). Mean/range of biotite compositions, given as Average Average Average Sample Phase Xphi-XAnn phlogopite-annite pairs [%]' F [%] CI [% SMNA-2a II (65.63-18.16V('68.49-20.86)-(71.07-24.83) 0.92 0.26 -14.33 1.99 -14.47 (Ikbar) 1.88 (Ikbar) r65.63-11.01Vr72.89-18.32)-(84.01-24.83) 0.96 0.23 -14.47 (Ikbar) 1.71 (Ikbar) SMNA-2

Average T, P [°C]^ [kbars]^ 823 0.45 (relict) 830 830

(avg. 2a, b)

SMRN-1

I

(51.99- 2.98Vr54.79-17.63)-f63.18-26.28) 0.50

0.09 -11.80 1.47 -11.41 1.79 -10.84 (Ikbar) 2.40 (Ikbar)

1110 5.75 (avg. H) 1081 3.77 (avg. E) 1039

not large enough. Averages correspond to a smaller number of data points, because a significant number of analysis were below detection limit. Numbers in italics correspond to samples where only one suitable pair was found for geothermometric calculation. ^ When available, pressures estimates within the pressure range of Al-in-homblende geobarometer calibrations by Schmidt (1992) have been used (numbers in italics correspond to values below the range of applicability for the calibration equation); otherwise a value of Ikbar was used, based on the local stratigraphy (Mapes Vazquez et al., 1964)

211

3.8.3.1 Concepcion del Oro Fluorine contents in biotites are, on average, higher for the late phases in this intrusion (between 0.7% and 1%) relative to the early phases, with two peaks: in phase lib sample SMCM-6 and in the late aplite sample SMCM-11. Average chlorine contents, however, remain at similar concentrations between 0.3 and 0.4 weight % with only a light increase from early phase la to a maximum in phase Ila sample SMCA-8 and a slight decrease in the late aplite. Halogen contents in the amphiboles of the different phases of the Concepcion del Oro pluton are low, on average around or less than 0.5 weight % fluorine and 0.1% or less chlorine, and generally lower than biotites in the same samples. Only in phase lib sample SMCM-6 and exceptionally in phase III sample SMCM-7 do some hornblendes show similar CI contents. A comparative F vs. CI plot for amphiboles and biotites in the different phases of the Concepcion del Oro intrusion is presented in Figure 3.8.3.1.1. Estimated oxygen fugacity values at 1 kbar for the different phases of the Concepcion del Oro intrusion increase, in absolute terms from log fOa ~ -18 in the early phase sample SMCA-1 to a maximum log f02 ~ -15 in the main phase lib sample SMCM-6, decreasing to a minimum log f02 —21 in late phase sample SMCM-9. The late aplite sample however shows an oxygen fugacity value of log f02 ~ -16, closer to the values in phase II. Water fugacity values on the other hand appear to increase in absolute terms from log fHaO ~ 1.4 to log fHiO ~ 2 within phase I from sample SMCA-1 to SMCA-5. Phase II samples show all water fugacities around log fH20 ~ 2, but the later phases have lower water fugacities around log fH20 ~ 1 with the exception of aplitic sample SMCM-11.

212

The latter shows a water fugacity value closer to the phase II samples. Estimated oxygen and water fugacity values, along with the average temperatures and pressures used to derive them are given in table 3.8.3 and Figure 3.8.3.1.2. Comparative chlorine vs. fluorine plot in hornblendes and biotites from the Concepcion del Oro intrusion Earty phases la (SMCA-1, SMCA-5) and Ila (SMCA-8) X

+

SMCA-I SMCA-5 SMCA-8 1:1 line

o

SMCA-1

o

SMCA-5 SMCA-S

oa(i 11 CI %

Comparative chlorine vs. fluorine plot in hornblendes and biotites from the Concepcidn del Oro intrusion Phases lib (SMCM-6), llla (SMCM-7, SMCM-9) and lllb (SMCM-11) X

SMCM-6

-h

SMCM-7a SMCM-9a 1:1 line

o o

1

;

-

1

SMCM-7a SMCM-9a

-£-p

!

X

SMCM-6

-

SMCM-lla

X

CI %

Figure 3.8.3.1.1: Comparative F vs. CI diagram between amphiboles and biotites for early and late phases of the Concepcion del Oro intrusion. Note in the lower diagram that no amphibole data were obtained for the late aplitic phase SMCM-11.

213

Logf02 vs. 1/T for samples of the Concepci6n del Oro intrusion

Wustite Magnetite FayaliteMagnetite+Quartz Ni-NiO

SMCM-6 4 SMCA-5a^SMCM-11a • SMCA-8

MagnetiteHematite

SMCA-1 SMCM-7a

SMCM-9a^ 0.0007

0.0008

0.0009

0.001

0.0011 l/TfK]

0.0012

0.0013

0.0014

Log f02 vs. log fH20 for samples of the Concepci6n del Oro intrusion -10

SMCM-6 -15 SMCM-11a*

^ * SMCA-5a SMCA-8

§ •SMCA-1 SMCM-7a -20 -

• SMCM-9a

-25 0.5

1.5 Log fH20

2.5

Figure 3.8.3.1.2: f02 vs. 1/T and log f02 vs. log fH20 diagrams for early and late phases of the Concepcion del Oro intrusion.

214

3.8.3.2 Providencia Halogen contents in the amphiboles of the different Providencia phases are generally low. They show, however, contrasting variations between phases III and IV. Phase III amphiboles are relatively fluorine-poor with a wide scattering in chlorine from very low concentrations to values above three tenths of a percent. In contrast, phase FV sample SMPW-1 shows a wide scattering in fluorine values from close to zero to over one percent, while chlorine contents are generally less than three tenths of a percent. Comparison with biotite einalyses in the same samples, show higher F as well as CI values for phase III and similarly high values for F and lower values for CI in amphiboles and biotites of the phase IV samples, but CI values in the biotites are not as low relative to the amphiboles. A comparative F vs. CI plot for amphiboles and biotites in the different phases of the Providencia intrusion is presented in Figure 3.8.3.2. Oxygen fugacity estimates in the different phases of the Providencia intrusion, calculated for a standard pressure of 1 kbar, increase in absolute terms the early porphyritic phases at Gloria Estela from log f02 ~ -16 to slightly above log fOa ~ -15 but decreases again to log fOi ~ -19 in phase III sample SMPG-5. In late phase IV samples SMPW-1 and SMPW-3 they fluctuate between log fOi ~ -11 and log fOi ~ -14. Water fugacities, on the other hand, decrease from log fH20 ~ 1.6 in the early phases to below one in phase III, only to increase markedly in phase IV to between 1.5 and 2.8 log fH20. These estimates, along with the average temperatures and pressures used to derive them are also given in Table 3.8.3 and Figure 3.8.3.2.

215

Comparative chlorine vs. fluorine plot in hornblendes and biotites from the Providencia intrusion including biotites from eariier intrusive phases Phase in (SMPG-5) and IVa (SMPW-1, SMPW-3)

X SMPG-5 •t-

SMPW-la SMPW-3 1:1 line

+

o

'^O

o <-*,

Earlier phases

o

• o SMPG-5 o

X o SMPW-1

CI 1%

Logf02 VS. 1/T for samples of the Providencia intrusion



SMPW-1

-Wustite Magnetite - FayaliteMagnetite+Quartz -Ni-NiO

SMPW-34 5IVIKG-3# SMPG-2

- MagnetiteHematite SMPG-5\4

0.(XX)7

0.0008

0.0009

0.001

0.0011 1/T[K1

0.0012

0.0013

0.0014

Log f02 vs. log fHjO for samples of the Providencia Intrusion -10

• SMPW-1

• SMPW-3 • SMPG-3

-15 -

•SMPG-2

o

S •SMPG-5 -20 -

-25 0.5

1.5 Log fH20

2.5

Figure 3.8.3.2: Comparative F vs. CI diagram between amphiboles and biotites, fD2 vs. 1/T and log f02 vs. log fH20 diagrams for the late phases of the Providencia intrusion. Note in the upper diagram that no amphibole data could be obtained for phase II samples SMPG-1, SMPG-2 and SMPG-3, listed in that order as earlier phases.

216

3.8.3.3 Noche Buena Amphiboles could be analyzed from phases II and HI, while biotite analyses could only be obtained for phase II sample SMNA-2. Halogen contents in phases II and III amphiboles from Noche Buena are low, around 0.3 weight % or less for fluorine in sample SMNA-2 compared with biotites in the same igneous phases; while for sample SMNA-4 these values can be up to 0.5%. In contrast, chlorine values are very low for sample SMNA-4, but higher and with a significant spread in values for sample SMNA-2 (from less than 0.05% to over 0.3%). Comparison of CI contents with biotites from the same igneous phases is only possible for sample SMNA-2, however it can be said in a general sense that the noticeable depletion in sample SMNA-4 (between 70% and 100%) contrasts with the spread from depleted to enriched values shown by sample SMNA-2, which is only depleted on average by about 60%. Fluorine vs. chlorine contents of amphibole analyses and comparison between halogen contents in hornblendes and biotites is presented on Figure 3.8.3.3. Estimates of oxygen and water fugacities, presented along with the average temperatures and pressures used to derive them in Table 3.8.3 and Figure 3.8.3.3, are generally around log f02 ~ -14, £ind between log fHiO ~ 1.7 and log fH20 ~ 2, respectively.

217

Comparative chlorine vs. fluorine plot in hornblendes and biotites from the Noche Buena intrusion Phases II (SMNA-2) and III (SMNA-4)

X

SMNA-2a

+

SMNA-4

O

SMNA-2a SMNA-2b

1:1 line

0.5 --

0.05

0,25

0.2

0.3

0.35

0.4

0.45

0.55

0.5

CI 1%1

Logf02 VS. 1/T for samples of the Noche Buena intrusion -10 -T

-12 -

-14 -

-Wustite Magnetite

SMNA-2a^

-Fayalite-

Magnetite+Quartz - Ni-NiO

I"

-MagnetiteHematite

-18

-20

-22

0.0007

0.0008

0.0009

0.001

0.0011

iniKi

0.0012

0.0013

0.0014

Log fOa vs. log fH20 for samples of the Noche Buena intrusion -10

SMNA-2b-|. -15 -

. +SMNA-2a Average SMNA-2

§

E -20 -

-25 0

0.5

1

1.5 Log fHjO

2

2.5

3

Figure 3.8.3.3: Comparative F vs. CI diagram between amphiboles and biotites, fOa vs. 1/T and log f02 vs. log fH20 diagrams for intermediate and late phases of the Noche Buena intrusion.

218

3.8.3.4 Santa Rosa Halogen contents in the amphiboles of Santa Rosa are consistently low, less than 0.5% fluorine and less than 0.1% chlorine, while for biotites in the same sample, these are respectively around 0.5% F and 0.1 % CI. Comparison between amphiboles and biotites shows both minerals to be equally depleted in halogens. In fact chlorine contents are only slightly higher than fluorine. A comparative F vs. CI plot between hornblendes and biotites is presented on Figure 3.8.3.4.1. Average oxygen and water fugacities at 1 kbar for the Santa Rosa igneous center are respectively log f02 ~ -11 and log fH20 ~ 2.4 (see Table 3.8.3 and Figure 3.8.3.4.2).

219

Comparative chlorine vs. fluorine plot in hornblendes and biotites from the Santa Rosa igneous center Sample SIVfRN-1

X

SMRN-I

1:1 line

O

SMRN-1

CI 1% ]

LogfOa vs. 1/T for samples of the Santa Rosa igneous center

• SMRN-1

Wustite Magnetite FayaliteMagnetite+Quartz Ni-NiO ^—MagnetiteHematite

0.0007

0.0008

0.0009

0.001

0.0011 1/T [K]

0.0012

0.0013

0.0014

Log f02 vs. log fHaO for samples of the Santa Rosa igneous center -10

•SMRN-1

-15 -

g

-20

0.5

1.5 Log fH20

2.5

Figure 3.8.3.4: Comparative F vs. CI diagram between amphiboles and biotites, fOa vs. 1/T and log f02 vs. log fH20 diagrams in the Santa Rosa igneous center.

220

3.9 Comparisons 3.9.1

Concepcion del Oro area

The plutons in the Concepcion del Oro area display a pattern of multiple intrusive events within a largely common geologic environment, but varying characteristics for the different phases. Comparison between the different intrusions shows common patterns in mineral chemistries of constituent minerals, halogen contents, oxygen and water fugacities as a factor of intrusive phase worth pointing out.

These are characterized in the early stages by intermediate andesine plagioclase feldspar with anorthite contents between 30% and close to 40%; Mg-rich pyroxenes within the Ca-rich, magnesian end of the augite field; edenitic amphiboles; and aluminum-poor, fluorine-poor but relatively chlorine-rich biotites. Temperature estimates range from 600°C to close to 800°C. Pressure estimates are only available from the Concepcion del Oro intrusion. They suggest pressures below 1 kbar (0.73 and below). Both temperature and pressure estimates are strongly affected by subsolidus reequilibration. Oxygen fugacities, calculated for a standard pressure of 1 kbar tend to lie in the range of -13 to -15.5 with water fugacities ranging from 2 to 3.5. The various early phases in the different intrusions can be characterized as mildly reducing, relatively water-rich magmas. In the middle stages, with only minor changes in the overall chemistry of the main rock-forming minerals, the intrusives become more reduced, hotter and less water-rich, with oxygen fugacities down to -18 to -21 and concurrent water fugacities down to less

221

than 2 or even less than 1. These main intrusive phases show slightly more mafic chemistries: slightly higher anorthite contents of plagioclase; more Mg-rich pyroxenes, between the salite and diopside fields; and biotites that are more magnesian, aluminumpoor, fluorine-poor and relatively chlorine-rich. There is, however, an apparent decrease in chlorine contents relative to the earlier phases.

Finally, the late phases consistently represent significantly more oxidized, hotter and water-rich conditions, with oxygen fugacities surging to around -11 to less than -10, and water fugacities upward from 3. Pyroxenes present in Providencia phase IV intrusives show more iron-rich compositions within the salite field. This is mirrored by the amphiboles, which range from ferro-edenite and ferro-edenitic hornblende to magnesian hastingsite in composition; as well as biotites. Geothermometric data on these late stage intermediate magmas indicate temperatures from 900°C to close to or in excess of 1000°C. Re-equilibration is, in the case of the Providencia intrusion, the cause for the lack of geobarometric data. Where re-equilibration is not extensive, hastingsitic amphiboles show higher pressure estimates than edenitic amphiboles. However, a continuum exists between estimates obtained from both amphibole types, that suggests mineral transition or re-equilibration taking place at pressures between 4.3 and 4.6 kbars (at depths between approximately 13 and 14 km). Plagioclase compositions become more albitic in the late phases, usually in the oligoclase range, and K-feldspar becomes an important component of the phenocrystic phase. There is also some evidence for a liquidus line between K-feldspar and plagioclase, as indicated by an almost complete range of intermediate compositions between oligoclase (An , SMPW-3; An , SMRN-1)

222

and potassium feldspar (Or^^, SMPW-3; Or™, SMRN-1). Characteristic for this late stage magmas are also less magnesium-rich, but more aluminum-rich biotites with halogen contents that range from fluorine-rich but chlorine-poor, to overall halogen-poor.

Particularly striking is the similar and parallel evolution in log f02/log fH20 between the different phases of the Concepcion del Oro and Providencia intrusions (see Figure 3.9.2). The limited estimates for the Noche Buena and Santa Rosa igneous bodies do also fit these trajectories as well, suggesting more than just coincidental similarities.

Table 3.9 presents a summary of calculated intensive parameters for the different intrusive samples in the Concepcion del Oro area. Average mineral compositions and comparative plots of halogen contents and intensive variables are displayed in Figures 3.9.1 through 3.9.3, grouped by intrusive phase.

223

Table 3.9: Summary table of average temperature and pressure estimates (Stormer, 1975; Schmidt, 1992), derived oxygen and water fugacities (Wones and Eugster, 1965; as well as Wones et al., 1971; and Wones, 1981), and halogen contents in biopyriboles for different intrusive phases in the Concepcion del Oro area. Sample Phase T [°C]' P [kbarsf logfOz log fH2o SMCA-1 690 0.62 -17.40 1.59 la -17.67 (Ikbar) 1.43 (Ikbar) 694 (Ikbar) SMCA-5 -15.40 2.02 la 785 1.0 SMCA-8

Ila

SMCM-7

749 752 lib 848 835 823 Ilia 669

0.73 (Ikbar) 3.11 (interior) 1.95 (rim) (Ikbar) 1.0

-15.89 -16.12 (Ikbar) -15.05 -14.78 -14.61 (Ikbar) -18.42

2.08 1.94 (Ikbar) 1.43 1.65 1.80 (Ikbar) 1.11

SMCM-9

Ilia 584

1.0

-21.16

0.68

SMCM-11 Illb 775

1.0

-15.61

1.81

SMCM-6

SMPG-1

Ila

NA

SMPG-2

lib

738

1.0

-16.41

1.60

SMPG-3

lie

820

1.0

-14.67

1.46

SMPG-5

III

SMPW-1

674 659 641 637 IVa 1041

5.03 (core, H) 3.33 (core, E) 1.36 (rim, E) (1 kbar) 1.0

-19.90 -19.08 -18.18 -19.43 (Ikbar) -10.81

0.16 0.70 1.31 0.71 (Ikbar) 2.75

SMPW-3

rva 854

1.0

-14.00

1.55

SMPV-1

V

600

NA

NA

NA

NA

NA

NA

F [%] 0.50 \bi 0.48 \io 0.17'hbi 0.55 \io 0.33 \bi 0.96 \io 0.62 \bi 0.74 \io

CI [%] 0.07 \bi 0.29 \io 0.04 \bi 0.29 \io 0.01 \bi 0.41 \io 0.04 \bi 0.35 \io

NA NA 0.43 hbi 0.72 bio NA 0.96 \io NA 0.22 bio NA 0.66 bio NA 0.83 bio 0.52 hbi 0.78 bio

NA 0.36 \io 0.09 hbi 0.32 bio NA 0.26 \io NA 0.29 bio NA 0.27 bio NA 0.20 bio 0.19 hbi 0.20 bio

0.50 hbi 0.96 bio 0.19 hw 0.58 bio NA

0.02 hbi 0.06 bio 0.02 hbi 0.07 bio NA

Numbers in italics correspond to samples with only one suitable pair for geothermometric calculation. ^ Averages correspond to a smaller number of data points, because a significant number of analysis were below detection limit. ^ Pressure estimates in italics correspond to values below the range of applicability for the calibration equation; otherwise a value of Ikbar was used based on the local stratigraphy (Mapes Vazquez et al., 1964). H corresponds to a hastingsitic composition, while E denotes an edenitic amphibole.

224

Table 3.9: (continued). Sample Phase T [°C]' P [kbars]^ SMNC-1 NA la 831 SMNC-2 NA la NA

log fOa NA NA

log fH20

NA NA

SMNA-2a

III

SMNA-2 (avg. 2a, b) SMNA-4

823 830 830

III

635

SMRN-1

I

1110 5.75 (avg. H) -11.80 1.47 1081 3.77 (avg. E) -11.41 1.79 1039 (Ikbar) -10.84 (Ikbar) 2.40 (Ikbar)

0.45 (relict) (Ikbar) (Ikbar)

NA

-14.33 1.99 -14.47 (Ikbar) 1.88 (Ikbar) -14.47 (Ikbar) 1.71 (Ikbar) NA

NA

F[%] NA 0.04 hbi NA 0.40 hbi 0.92 bio 0.40 hbi 0.96 bio 0.11 hbi NA 0.35 hbi

CI [%] NA 0.01 hbi NA 0.12 hbi 0.26 bio 0.12 hbi 0.23 bio 0.03 hbi NA 0.06 hbi

0.50 bio

0.09 bio

Numbers in italics correspond to samples with only one suitable pair for geothermometric calculation. ^ Averages correspond to a smaller number of data points, because a significant number of analysis were below detection limit. ^ Pressure estimates in italics correspond to values below the range of applicability for the calibration equation; otherwise a value of Ikbar was used based on the local stratigraphy (Mapes Vazquez et al., 1964). H corresponds to a hastingsitic composition, while E denotes an edenitic amphibole.

Average pyroxene compositions for the different intrusive phases in the Concepcion del Oro area, after Deer et al. (1963)

Average plagioclase and K-feldspar compositions for tlie different intrusive phases in tlie Concepcibn del Oro area

/ / Oiopsid;

1

/ /

O Phase III •

A

A Phase I



salite

• Phase II

4

A OPhase III • Phase IV

• Phase IV

X Lndiopside



Augjie

/

crro-augit

. SMPW-3 • SMRN-1 '*

jijf-

Na 1% lite A]

Plot of average biotite compositions for the different intrusive phases in the Concepcion del Oro area

Plot of average calcic anqihibole compositions in Si|4] vs. Pe/Fe-i-Mg space for the dUTerent intrusive phases in the Concepcidn del Oro area Silicic ferro-

Ferro-

Ferro-

edenite

edenite

;denitic

ho

ibicnde

Ferro-|: irgasitic(Fe Hastin hombl

3+
snic (Fe'^Al"") nde

VI

Al-Phlogopite

)/

Hastingsiic

>

• D

j

Fem.-pa,gasite/

FciToan pargasite /

^ Phase I # Phase II • O Phase III

• • •

Magncsian hastingsite

O Phase I

• Edcnilc

Eden itic ho nblcndc



Silicic cdcnilc

. ^ 3+ VI Pargas ic(Fe
Magnc io-hastingsitic .<+ VI > l I 1 hornblende

• • Pargasiie/ Magnesiohastingsitc Phlogcpitc

(Fe

5

Sii'i Ipful

06

0 7

( X

09

1

^ PtiloBoplto

Figure 3.9.1.1: Comparative summary illustration of average feldspar, pyroxene, amphibole and biotite compositions for the different phases of Concepcion del Oro area intrusions. In the feldspar diagram on the upper left, plagioclase compositions are represented by fiill symbols, compared to K-feldspar compositions. The two non-average sets are considered to be liquid lines of descent and correspond to phase IV samples (see sections 3.3.2 and 3.3.4), for which the average compositions are also given. Empty symbols in the pyroxene diagram on the upper right are considered to belong to metasomatic overgrowth/alteration pyroxenes (see section 3.4.3.). In the amphibole diagram on the lower left, average hastingsitic amphibole compositions are represented as empty symbols, linked to the specific intrusion's average edenitic amphibole, represented as full symbols.

Comparative plot of average chlorine vs. fluorine in amphiboles

Comparative chlorine vs. fluorine plot in hornblendes

from the different intrusive phases in the Concepcion del Oro area

and biotites from Concepcion del Oro area intrusives O O

• •

Phase 1

Phase I Phase 11 Phase

Phase II

A

• Phase IV

O Phase III



»

A



Phase

• Phase il

Phase IV



O

Phase

1:1 line Phase IV

CI %

CI 1% I

Comparative log fOj vs. 1/T plot for the differentintrusives phases in the

Comparative log f02' log fH20 diagram for the different intrusive phases

Concepcidn del Oro area

in the Concepcion dei Oro area Wustite - Magnetite

SMRN-1

—~ FayaliteMagnetite+Quartz Ni-NiO

SMNAr2a

C. del Oro

Magnetite-Hematite

Providencia ^—Concepcidn del Oro

O phase I

——Pro\^dencia

• phase II A phase o phase IV

0.0007

0.0008

0.0009

0,001

0.0011 1/TIK]

0.0012

0.0013

0.0014 log tH20

Figure 3.9.1.2: Comparative summary illustration of halogen contents in amphiboles and biotites, oxygen and water fugacities derived from biotite data for the different phases of the Concepcion del Oro area intrusions. In the upper right illustration, the amphiboles presented in the illustration immediately to the left, are displayed as open symbols, while biotites are presented as filled symbols. Buffer reactions, as well as oxygen and water fugacity estimates from biotite data (Wones and Eugster, 1965; Wones et al., 1971; and Wones, 1981) for the different intrusive phases were calculated for an average pressure of 1 kbar using SUPCRT (Johnson et al., 1992).

227

Plot of average values for l-type granitoid classification based on biotite composition for Intrusive phases in the Concepcion del Oro area, after Ague and Brimhall (1988b) 0.0

• -0.5 -

^

1

.•

5.-1.0 o

l-SCR (strongly contaminated and

X

l-SC (strongly contaminated)

V

l-MC



^ Phase i • ^ Phase II • • O Phase III • • Phase IV

-2.0

l-WC (weakly -2.5 -0.8

-0.6

>0.4 -0.2 log XMg/XFe

0.2

Figure 3.9.1.3; Comparative plot of granitoid source lithologies for the different intrusive phases in the Concepcion del Oro area, after Ague and Brimhall (1988).

228

3.9.2

Mesa Central of Mexico

Microanalytical data for other intrusive centers in the Mesa Central of Mexico are sparse or even anecdotical, thus a regional comparison is incomplete at best. Some data exist on halogen contents in apatites exist for the Concepcion del Oro, Providencia and Noche Buena systems from Roegge (1984), but not for any other rock-forming mineral phases. Also some data exist for the mineralized Guadalcazar granite (Chryssoulis and Wilkinson, 1983) and mid-Tertiary volcanics related, as vv'ell as unrelated to tin-fluorine mineralization (Ruiz, 1983). There are, however, fairly complete analytical data both for igneous and metasomatic mineral phases in the San Martin mineralized system from Rubin and Kyle (1984), and Graf (1997). Despite the rather disconnected nature of the available analytical data, the available data allow some observations to be made that constitute a first attempt toward a regional synthesis.

Microanalysis of rock-forming minerals for the mafic intrusions in the central sector of the Sierra Madre Oriental, in the immediate vicinity of the Concepcion del Oro area (Cerro Pedregoso, El Saltillito, Rocamontes, San Rafael and Cerro Prieto), were not the primary subject of this work. The work of Hamblock (2002), although centered in the mafic intrusions of the Monclova-Candelas Belt (Sewell, 1969) and on the San Carlos and Milagro areas, respectively in the Sierra de San Carlos and Sierra de Tamaulipas, includes the Cerro Prieto intrusion and offers some comparative data between these intrusions and the Concepcion del Oro area. Another relevant microanalytical data set in the region is the study of the San Martin polymetallic skam system (Graf, 1997). Limited

229

data also exist for micas in mid-Tertiary igneous rocks related to mineralized, high fluorine tin systems in San Luis Potosi from Ruiz (1983).

As already mentioned in the comparison section for the major and trace element data (section 2.4.5), the early phase of the Noche Buena intrusion and inclusions in phase lib of the Concepcion del Oro pluton resemble the mafic intrusives in the central sector of the Sierra Madre Oriental. Brief review of amphibole and biotite compositions for these mafic intrusion samples show, for the amphiboles, compositions with generally higher Fe/Fe+Mg and lower silica contents per formula unit than amphibole analyses from the Concepcion del Oro area (Figure 3.9.2.1). Only phase III and IV samples from Providencia and the Santa Rosa igneous center amphiboles have comparable compositions, particularly with analyses from the Cerro Mercado and San Carlos systems Additionally, isolated data points in the einalysis from the mafic intrusions indicate the presence of pargasitic amphiboles, which are absent in the Concepcion del Oro area. Average halogen contents in amphiboles of the mafic intrusions are low and generally comparable not just to those in the early phases of the Concepcion del Oro and Noche Buena plutons, but to most phases other than phase III samples from Concepcion del Oro and Providencia (Figure 3.9.2.2). Biotite compositions in the mafic intrusions are for the most part, on average, slightly more annite-rich, but more significantly lower in chlorine and in some cases higher in fluorine (San Carlos) than biotites from most phases in the Concepcion del Oro area. The only exception, in terms of annite contents, corresponds to the Cerro Prieto intrusion, which has similarly magnesium-rich and aluminum-poor biotites than analyses from the early and main intrusive phases of the Concepcion del Oro

230

and Providencia plutons (Figure 3.9.2.3), but has significantly lower chlorine contents. Average halogen contents from the Cerro Mercado intrusion in Coahuila, however, resemble closely those of the early phases in the Concepcion del Oro area. Biotite analyses from the San Carlos intrusion, with their average higher fluorine but lower chlorine contents, appear similar to late phase IV biotites from the Providencia intrusion or biotites from the Santa Rosa igneous center. The latter have, however, higher aluminum contents. Finally, discrimination of potential granitoid source lithology based on phlogopite fraction and fluorine contents, after Ague and Brimhall (1988b), shows that mafic intrusions from Coahuila and Tamaulipas are, on average, more reduced and contaminated with metasedimentary materials than the early and main phases in the Concepcion del Oro area, and only comparable to late phase IV samples (Figure 3.9.2.4). Only the Cerro Prieto analyses are similar to those in the early porphyry phase of the Providencia intrusion

(sample SMPG-1). Overall, the amphibole and

biotite

microanalytical data set for the mafic intrusions from Hamblock (2002) suggests only some degree of similarity between those, specifically with analyses from the Cerro Mercado, San Carlos and Cerro Prieto systems, and the intrusives in the Concepcion del Oro area. Nevertheless it has to acknowledged, that, in most cases, only one or a few phases for any given intrusion where analysed by Hamblock (2002). Furthermore, that due to time constraints and project scope, several of the mafic intrusions in northern Zacatecas (notably Cerro Pedregoso, El Saltillito, Rocamontes or San Rafael) were not included.

231

In contrast, the microanalytical data set for mafic minerals of the San Martm pluton (Graf, 1997) shows some comparable amphibole compositions and halogen contents for both amphiboles and biotites between the early phases and analyses from Concepcion del Oro area intrusions. Specifically, average hastingsitic and edenitic amphibole compositions for the earliest dioritic phase at San Martm (sample SM-48.50) are relatively similar to phase III and IV analyses from the Providencia intrusion. Halogen contents in both amphiboles (early phases) and biotites (early and late phases) of the San Martm pluton are comparable to those of phases II and III from the intrusions in the Concepcion del Oro area. However, biotite compositions at San Martm have significantly higher annite and siderophyllite component. The discrimination diagram of from Ague and Brimhall (1988b) suggests that the potential granitoid source lithology for the San Martm pluton is in all cases, including the earliest dioritic phase, more reduced and shows stronger crustal contamination than even the most evolved phases in the Concepcion del Oro area.

The limited data for mid-Tertiary felsic volcanics in the Mesa Central (Ruiz, 1983) suggest some differences worth noting. The data for the Las Cuevas mineralized system shows biotite (and pyroxenes, not shown here) to be predominantly iron-rich and, for the biotite analyses, also aluminum-poor (Figure 3.9.2.3) and significantly enriched in fluorine (shown indirectly as log XF/XOH in the Figure 3.9.2.4). Biotites from coeval volcanics not related to fluorine mineralization, represented by the Navidad and Inde analyses, are more Mg- and Al-rich, as well as F-poor than the Las Cuevas system. Compared to the samples from the Concepcion del Oro area, however, all are relatively

232

iron-rich, as suggested by their Fe/Fe+Mg ratios. Particularly late IV phases in the Concepcion del Oro area appear to be similar to the Navidad and Inde volcanics, although their A1 and F contents are not as high. These characteristics are reflected in the diagram of Ague and Brimhall (1988b), which indicates the potential source for the parental magmas to be more reduced and strongly contaminated with crustal materials than the Concepcion del Oro area intrusions. They are to an extent, however, comparable to some of the other Mesa Central systems. Specifically, the Las Cuevas biotite analysis resembles similar analyses from the main phase in the San Martin pluton suggesting some similarity in crustal sources in spite of their different ages (46 Ma for the San Martm system, Damon et al., 1983; 33 Ma for Las Cuevas, Ruiz, 1983).

233

Plot of average calcic amphibole compositions in Si[4j vs. Fe/Fe+Mg space for mafic intrusions in NE Mexico (Hamblock, 2002), after Leake (1978) O C. Prieto Silicic ferro-

Ferro-

edenite

edenite

•<+ VI Ferro-j argasitic (Fe
Ferrojdenitic

Hastin sitic hombl nde

hot iblende

X Feiro-pargasite /

^

Hastingsite

• San Carlos

n AC. Mercado



f

A

Ferroan pargas ite Magnesian bastingsitt

Silicic edenite

Edenite

3+ .VI Pargas ic (Fe
xienitic hor blende

Magne io-hastingsitic 3+ VI > A > hornblende

Pargasite Magnesiohastingsit{

' C. Providencia O C. Colorado

E

+

(Fe 6.5

Si^lIpfu]

Plot of average calcic amphibole compositions in Si|4| vs. Fe/Fe+Mg space for the San Martin pluton (Graf, 1997), after Leake (1978) Silicic ferroedenite

Ferroedenite

3+

VI
Fertx)-

Ferro-pi gasitic(Fe

lei^ic

3+ VI Hasting !?c (Fe >A1 ) homble

horn >lenae

Ferro-pargasite / Hastingsite

o • SM^S.SO

4 Ferroan pargasite / t

Magnesian hastingsite

Silicic edenite

Edenite

I lenitic

Pargas it c (Fe

hom )lende

3+

VI
Pargasite/

Magnes o-hastingsitic 3+ VI Fe >A 1 ) hornblende

Magnesiohastingsite

6.5

SiHltpful

IMot of average calcic amphibole con^Msitions in Si(4| vs. Fe/Fe+Mg space for the dilTerent intrusive phases in the Concepcidn del Oro area Silicic ferro-

Ferro-

Ferro-

edenite

edenite

jdenitic ho: iblende

Ferro-p irgasitic(Fe

3+

VI
Hastin: sit,c(Fe'^Al") nde hornbl

Ferro-pargasite/ Hastingsite

# Phase I #Phase II •

)

• •

I

Ferroan pargasite /



Magnesian hastingsite

O Phase III •

T 0.4 o

Silicic edenite

• Phase IV

Edenite

Edenitic ho iblende

3+ VI Pargas ic (Fe \.\ > hornblende

Pargasite/ Magnesiohastingsite

6.5

Figure 3.9.2.1: Comparative summary illustration of average amphibole compositions between the mafic intrusions from NE Mexico (Hamblock, 2002), the San Martin pluton (Graf, 1997) and the intrusives in the Concepcion del Oro area. Hastingsitic amphiboles are represented as empty symbols, while hatch symbols correspond to pargasites and filled symbols to edenites.

234

Comparative chlorine vs. fluorine plot in hornblendes and biotites from mafic intrusions in NE Mexico, after Hamblock (200^ O

C.PrietoDGO

C

San Carlos TAM C. Mercado COA C. Providencia

X

COA C.Colorado East COA 1; 1 line

• •

C. Prieto DGO San Carlos TAM C. Mercado COA C. Providencia

0.2

0.25

0.3

CI [% 1

COA C. Colorado

Comparative chlorine vs. fluorine plot in hornblendes and biotites from the San Martin intrusion after Graf (1997)

o

SM-4«.50



U-35 1:1 line



SM-48.50



U-35

A

MPS



U-136

a

QP-S2

U-112

CI %I

Comparative chlorine vs. fluorine plot in hornblendes and biotites from Concepci6n del Oro area intrusives

O 0 A,

Phase I Phase II Phase III



O



Phase IV 1:1 line Phase I





Phase II





o

Phase III



Phase IV

• • CI 1%I

Figure 3.9.2.2: Summary illustration of average halogen contents in amphiboles and/or biotites in mafic intrusions in NE Mexico (Hamblock, 2002), the San Martin pluton (Graf, 1997) and the Concepcion del Oro area intrusions. Halogen contents amphiboles are represented as empty symbols, while filled symbols correspond to biotites.

Average biotite compositions from the San Martin intrusion, after Graf (1997)

Average biotite compositions from mafic intrusions in NE Mexico, after Hamblock (2002)

Al-Phtogopitc —•

AUPhlogopUe • C. Prieto DGO

•SM-4S.50

• San Carlos TAM AC. Mercado COA # Panuco mine

|0,3

I

I

• U-35 AMP-S • U-136

^C. Providencia COA C. Providencia OOA QC. Colorado East COA

i«0.2

au-ii2 aOP-s2

Phbgopite -

Phlogopite X Phlogopite

X Phlogopite

Average biotite compositions for the different intrusive piiases in the Concepcion del Oro area

Biotites from mid-Tertiary feisic rocks both associated and unrelated to high F systems in the Mesa Central, after Ruiz (1983)

Al-Phlogopile —»

; • Phase I

• •so..?

ts

[

#Las Cucvas SLP

-

-

• Navidad DGO

• Phase II

I



••

• CPhase III

Lf

|o.2

X

X

a

• 0,1

• Phase IV

A •





%• Phlogopiic -

^ Phlogopite

X Phlogopite

Figure 3.9.2.3: Comparative summary illustration of average biotite compositions between the mafic intrusions from NE Mexico (Hamblock, 2002), the San Martin pluton (Graf, 1997), selected mid-Tertiary feisic igneous rocks in the Mesa Central (Ruiz, 1983) and the intrusives in the Concepcion del Oro area.

to U) L/}

Plot of average values for l-type granitoid classification based on biotlte composition for mafic intrusions in NE Mexico,from Hamblock(2002)

Plot of average values for l-type granitoid classification based on biotite composKion for tlie San Martin intrusion,from Graf(1997)

after Agus and Brimhall (198Bb)

after Ague and Brimhall (1988b) l-SC (strongly contaminated)





^-1.0

I .S

l-SCR (strongly contaminated and



l-MC

A -2.0

l-WC (weakly -0.4

•Cerro Prieto DGO • San Carlos TAM ^C. Mercado COA • Panuco mine COA •C. Provtdencia COA UC. Colorado East COA

l-SC (strongly contaminated)

• &

l-MC

l-SCR (strongly contaminated and

X -1-5

s •

«SM-48.50 • U-35 amp-s • U-136 saU-112 aQP-S2

l-WC (weakly -0.4

-0.2

-0.2

log XMg/XFe

log XMg/XFe

Average values for l-type granitoid classification based on biotite for midTertiary felsic systems in the Mesa Central,from Ruiz(1983)

Plot of average values for l-type granitoid classification based on biotite composition for Intrusive phases in the Concepci6n del Oro area,

after Ague and Brimhall (1988b)

after Ague and Brimhall (1988b) l-SC (Strongly contaminated)



jI-1.0 5

A

l-SCR (strongly contaminated and

l-MC A

• ^ ^

1 #Las Cuevas SLP • Navidad DGO Alnd6 DGO

li

?

l-SC (strongly contaminated)

_•

|.-1.0 o

^ C#

l-SCR (strongly contaminated and



l-MC

4 Phase I • # Phase II

• O Phase II

X -1.5

8" l-WC (weakly

l-WC (weakly -0.4

-0.2

log XMg/XFe

-0.4 -0.2 log XMg/XFe

Figure 3.9.2.4: Comparison of granitoid source lithologies, after Ague and Brimhall (1988b), between the mafic intrusions in NE Mexico (Hamblock, 2002), the San Martin pluton (Graf, 1997), selected mid-Tertiary felsic igneous rocks in the Mesa Central (Ruiz, 1983) and the Concepcion del Oro area intrusions.

U)

ON

237

3.9.3

Selected systems in the American Southwest and the Sierra Nevada

Despite the wealth of research done on mineralized systems in the southwestern United States, microanalytical data from porphyry systems are not easily available. These often focus, however, on biotite because of their ubiquitous presence, both primary igneous and secondary, as a result of potassic alteration. Furthermore their usefulness as potential oxygen barometers and halogen content indicators, and their conmion occurrence late in the crystallization paragenesis have allowed a relatively broad, if not very systematic, database to emerge. The data focus mostly on the halogen contents for different igneous systems (Kesler et al., 1975; Jacobs, 1976; Jacobs and Parry, 1976; Banks, 1976; Gunow, 1978; Lang, 1998; or Mazdab, 2002; to name the more easily available sources) and, to an extent, on their composition (Moore and Czamanske, 1973; Jacobs, 1976; Gunow, 1978). From this group, only Banks (1976), Gunow (1978) and Mazdab (2002) analyze or compile data for other silicate phases other than biotite.

The more detailed datasets correspond to Moore and Czamanske (1973) for the Bingham system, Jacobs (1976) for the Santa Rita and Hanover-Fierro systems in New Mexico, and Gunow (1978) for the Henderson porphyry molybdenum, which include both halogen contents and overall compositional data. The data from the first two systems were used for comparative purposes with the Concepcion del Oro area since they represent mineralized systems not unlike those in the area of study. Halogen data by Kesler et al. (1975), and Jacobs and Parry (1976) were also considered as they both

238

constitute broader regional compilations, together with data by Dodge et al. (1968, 1969) for the central Sierra Nevada.

Comparison of halogen contents in amphiboles and biotites suggests, for the data available, generally low contents in both fluorine and chlorine in the Ray porphyry system, with the highest chlorine values in the biotites of the Tortilla quartzdiorite and Rattler granodiorite, and highest fluorine contents in the Granite Mountain porphyry, particularly the mineralized sample (Figure 3.9.3.1). A roughly similar pattern of halogen contents is suggested by the summary data from the central Sierra Nevada batholith, although some biotites show similar fluorine-poor and chlorine-enriched compositions as phase II and III Concepcion del Oro area analyses. Halogen contents in biotites from other mineralized systems reveal roughly similar halogen contents to those of Concepcion del Oro area intrusive phases in the available analysis from the Bingham and Last Chance stocks, as well as the Park City intrusion, the Santa Rita and Hanover-Fierro samples (Kesler et al., 1975; Jacobs and Parry, 1976). The biotite analyses from the Little Cottonwood pluton (Jacobs and Parry, 1976) and the Mineral Hill diorite (Kesler et al., 1975), on the other hand, show generally low halogen contents, while the Mineral Hill granodiorite contains chlorine-poor, somewhat fluorine-enriched biotites. Both latter types are similar to those of phase FV samples from the Concepcion del Oro area (Figure 3.9.3.2).

Biotites from the Bingham and Last Chance stocks, and from the Santa Rita and Hanover-Fierro system, are compositionally also similar to phase II and III biotite

239

analyses in the Concepcion del Oro area. They show phlogopite-rich, siderophyllite-poor compositions, unlike analyses from biotites in the central Sierra Nevada batholith, which have higher aluminum and iron contents, rather like phase IV analyses from Concepcion del Oro area intrusives (Figure 3.9.3.3). This pattern is further supported by the granitoid discrimination diagram of Ague and Brimhall (1988b), which indicates moderate to strong crustal contamination for the biotites respectively from the Santa-Rita, HanoverFierro and the Bingham and Last Chance stocks that are similar to the early and main phases of the Concepcion del Oro area intrusives (Figure 3.9.3.4). The available analysis from the central Sierra Nevada batholith, on the other hand, fall in the field of strongly contaminated and reduced granitoids like biotite analyses from phase IV intrusive phases, but are relatively depleted in fluorine with respect to them.

Overall, the early and main phases of the Concepcion del Oro area intrusives and the porphyry copper deposits for which microanalytical data are available appear to be fairly similar. This similarity may be the result of similar processes, by which relatively chlorine-enriched biotite compositions predominate in mineralized systems, as well as possible tectonic setting and thus comparable magma sources. In the first case, relatively chlorine-enriched biotites are also present in the San Martin pluton of central Zacatecas, and in Cerro Providencia, in the Monclova-Candela Belt, both of which have significant mineralization associated with them (Cerro Providencia?). In the second case, a mildly extensional tectonic regime suggested to be associated with mafic to alkalic magmatism appears to be coeval with mineralization at Bingham (Keith et al., 1998). The Sierra Nevada data available represent, from a tectonic point of view, magmatism under more

240

reducing conditions, dominated by crustal sources. The original data by Ague and Brimhall (1988b), however, include less contaminated and reduced compositions that indicate other, more primitive sources as well. Mafic plutonic rocks in the Sierra Nevada have been documented in the Jurassic (Frost and Mattinson, 1993) as well as in the late Cretaceous (Frost and Mahood, 1987; Frost and Mattinson, 1988). In the case of the former, they are considered to be partial melts from evolved sub-continental lithosphere (Frost and Mattinson, 1993). Mafic magmatism in the Sierra Nevada occurs in the Tertiary as a result of Basin and Range extension.

241

Comparative chlorine vs. fluorine plot in hornblendes and biotites from igneous rocks in the Ray porphyry system, after Bank n976) O

Tortilla



auartzdiorite littler granodiorite Rhyodacite dike Granite Mtn.

• •• •

porphyry 1:1 line Tortilla auartzdiorite

• littler A

granodiorite Rhyodacite dike



Granite Mtn.



porphyry min. Qanite Mtn

Cl|%

Comparative chlorine vs. fluorine plot in hornblendes and biotites from selected intrusions in the central Sierra Nevada Batholith, after Dodge and Moore (1968), Dodge et al. (1969) •

Hbl-bearing granitoids Hbl-px granitoids





1:1 line

Biotite-bearing granitoids



Hbl-bearing granitoids

A

Hbl-px granitoids

a 1%

Comparative chlorine vs. fluorine plot in hornblendes and biotites from Concepci6n del Oro area intrusives

0 o A

Phase I Phase 11 Phase III



Phase IV

O



1:1 line Phase I





Phase 11



A O

Phase III



Phase IV

• • CI 1% I

Figure 3.9.3.1; Summary illustration of average halogen contents in amphiboles and/or biotites from the Ray porphyry system (Bank, 1976), selected plutons in the central Sierra Nevada batholith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions. Halogen contents amphiboles are represented as empty symbols, while filled symbols correspond to biotites.

242

Con^rative CI vs. F diagram in biotites between intrusive phases in the Concepcidn del Oro area and the Last Chance and Bii^ham stocks, Kesler et aL (1975), after Jacobs and Parry (1976)



i" •

A* A

i

A

15

O i _

i I o

•*

m Phase JV • A Last Cliancc slock • Ringhamstock iljLiKic CoUonwood granite UParkChy intrusion

Comparative CI vs. F diagram in Iriotites between intrusive phases in the Concepcidn del Oro area and averages for the Santa Rita and Hanovep-Flerro systems, after Jacobs & Parry (1976)

• Phase II

A Santa Riia (hydrt^thcnnal) A Santa Riia (replacing hbl) ASanta Rita (magmalic) A Hanover-l-ierro (replacing hbl) A Hanover-h'ierro (inagmatic)

CI [%|

Con^rative CI vs. F diagram in biotites between intnuive phases in the Concepcidn del Oro area and the Mineral Hill-Mission porj^yry system in Arizona, after Kesler et aL (1975)

A Mineral Hilldiorilc • Mineral Mill granodiorite

Figure 3.9.3.2: Summary illustration of halogen contents in biotites of the Last Chance and Bingham stocks (Kesler et ah, 1975; Jacobs and Parry, 1976), the Santa Rita and Hanover-Fierro system (Jacobs, 1976), and the Mineral Hill system (Kestler et al., 1975), with comparative values from the different Concepcion del Oro area intrusive phases.

Average biotite compositions for tlie Santa Rita and Hanover Fierro porphyry system, after Jacobs (1976)

Average biotite compositions for the Last Chance and Bingham quartzmonzonites, after Moore and Czamanske (1973) Al-Phlogopite

Al-Phlogopite -

•— Al- Annite

• homblcnde norphyiy (K) • biotite poiphyry Asenatc biotite poiphyry • apbtic biotite pofphyiy ^pegm. biotite porphyry mnoverRerro Slgranodiorite

^ Last Chance go.3

• Bingham ^ Bingham (altered)

I lo. X

0.1

-

^ Phlogopite

X Pblogopit«

Average biotite compositions for central Sierra Nevada Batholith intrusions, after Dodge and Moore (1968), Dodge et al, (1969) - Al- Annite [

Phlogopite -

«— Annite

Phngopite

Average biotite compositions for the different intrusive phases in the Concepcion del Oro area Al-Phlogopite—*

Al- Annite

Al-Phk)gopite -

# Phase I # Biotic-only granitoids

• Phase II

.«).3

• •

• Hbl-bearing granitoids

f

AHbi*. pxbcaring granitoids



V Phlogopitc -

X Phlogopite

Phlogopite -

•— Annite X Phlogopite

Figure 3.9.3.3: Comparative summary illustration of average biotite compositions between the Last Chance and Bingham quartzmonzonites (Moore and Czamanske, 1973), the Ray porphyry system (Bank, 1976), selected plutons in the central Sierra Nevada batholith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions.

U)

Average values for k-type granitoid classification based on biotite for the Last Cliance and Bingham stocks,from Moore and Czamanske(1973)

Average values for l-type granitoid classification based on biotite for the Santa Rita and Hanover-Fierro porphyry systems,from Jacobs(1976)

after Ague and Brimhall (1988b)

after Ague and Brimhall (1988b)

Santa RJta l-SC (strongly contaminated)

l-SC (Strongly contaminated)

-0.5

6

^4—•—1-

•Last Chance l-SCR (strongly contaminated and

O

^-1.0

I Bingham (altered)

X -1.5

porphyry

l-SCR (strongly contaminated and

l-MC

-2.0

-2.0

l-WC (weakly

l-WC (weakly -2.5

-0.4

-0.4

-0.2

• aplitic biotite porphyry ^pegm. biotite porphyry HanoverFierro ygranodiorite porphyry

-0.2

log XMg/XFe

log XMg/XFe

••type granitoid classification based on biotite composition for different intrusives In thecentral Sierra Nevada Bathoiith.from Dodge et ai.(1969)

Plot of average values for l-type granitoid classification based on biotite composition for intrusive phases In the Concepci6n del Oro area,

after Ague and Brimhall (1988b)

after Ague and Brimhall (1988b) l-SC (strongly contaminated)

|--1.0

0

^ hornblende porphyry (K) • biotite porphyry /^seriate biotite

I.SCR (stroruly ccMaminateAnd

l-MC

X -1-5

Biotite-only granitoids Hbt-beanng granitoids A Hbl-, px beanng granitoids



6

o

I-.S

-0.2

log XMg/XFe

^

l-SC (strongly contaminated)



|.-1.0 l-SCR (strongly contaminated and

l-WC (weakly -0.4

• ^

I



l-MC

• Phase I • # Phase II

• O Phase 11

l-WC (weakly -0.4 -0.2 log XMg/XFe

Figure 3.9.3.4: Comparison of granitoid source lithologies, after Ague and Brimhall (1988b), between the Last Chance and Bingham quartz-monzonites (Moore and Czamanske, 1973), the Santa Rita and Hanover-Fierro porphyry system (Jacobs, 1976), selected plutons in the central Sierra Nevada bathoiith (Dodge et al., 1968; 1969) and the Concepcion del Oro area intrusions.

245

3.9.4

Other circum-pacific magmatic arcs (Japan-South Korea, Lachlan Fold Belt).

Only limited microanalytical data from intrusions in South Korea were available as examples for the Mesozoic magmatic arc of Japan and Korea (Tsusue et al., 1981). These data pertain, in a tectonic sense, to the innermost part of the Jurassic-Cretaceous arc (Shimazaki et al., 1981; Sohma and Maruyama, 1989, op. cit. Nakajima et al., 1992). Hence, comparison with the igneous rocks of the Concepcion del Oro area, and, in general, with the Mesa Central of Mexico is largely based on geologic and metallogenic summaries (Shimazaki, 1980; Ishihara, 1981; Shimazaki et al., 1981; Kutsukake and Yoshida, 1992; Nakajima et al., 1992; Nakajima, 1996; Nakano, 1998). Similarly, comparisons with the Lachlan Fold Belt are based on geologic and metallogenic summaries (Coney, 1992; Chappel and White, 1974; Chappel, 1996; Zen, 1995; Blevin et al., 1995; Blevin et al., 1996).

The Jurassic-Cretaceous magmatic arc of southwestern Japan and South Korea is developed on continental crust resulting from the collision the Sino-Korean and Yangtze cratons. This collision results in the yuxtaposition of the Ryongnam Massif and Kyongsang (Gyeongsang) Basin of probable affinity with the Yangtze Craton onto the Kyonggi (Gyeonggi) Massif, presumed to be autochtonous Sino-Korean craton. The suture zone has been hypothesized to be the in the Ogcheon Fold Belt (Sohma et al., 1990; op.cit. Nakajima et al., 1992). In Japan, this collisional event is represented, according to Nakajima et al. (1992), by the yuxtaposition of the Hida-Oki Complex in central Honshu, which includes a Precambrian gneiss complex and a Paleozoic

246

sedimentary sequence with faunas linked to similar formations in the Sino-Korean Craton, and the Hida Marginal Belt. The Hida Marginal Belt contains two late Paleozoicearly Mesozoic accretionary complexes (the Oeyama Ophiolite, Akiyoshi and SangunRenge nappes; and the Yakuno Ophiolite, Maizuru and Ultra-Tamba nappes) that have been tectonically disrupted and each thrust respectively over the younger complex. These, in turn, are thrust over a Jurassic accretionary complex, represented by the Tamba nappes and the Ryoke Belt. In central Honshu, the Hida Marginal Belt wraps tightly around the Hida-Oki complex, where it has been mixed up into a melange within a serpentine matrix and thrust over the Jurassic accretionary complex. In contrast, the recognizable sequence of nappes previously mentioned is more extensively exposed in western Honshu. The pre-Jurassic accretionary complexes include limestones with invertebrate faunas of Tethyan affinity linked to the Yangtze Craton. The Unazuki Metamorphic Belt is considered to be the suture zone between the Hida-Oki Complex and the Hida Marginal Belt (Hiroi, 1983; op. cit. in Nakajima et al., 1992). Magmatic activity in the Jurassic and Cretaceous is widespread and appears to be roughly synchronous in South Korea and western Japan: the Daebo granitoids in Korea, the Funatsu (Hida Complex) and Older granitoids (Tamba nappes and Ryoke Belt) in Japan, on the one hand; the Bulgugsa (Bulguksa) granitoids in Korea, and the Cretaceous (Younger) granitoids in Japan, on the other hand (Nakajima et al., 1992).

In southwestern Japan, Cretaceous plutons intrude the Hida-Oki Complex, the different pre-Jurassic nappes in the Hida Marginal Belt, as well as the Jurassic Tamba nappes and the Ryoke Belt. Similarly, granitoid intrusion in South Korea takes place

247

across the Kyongsang Basin, the Ogcheon Fold Belt and in the Kyonggi Massif. The Cretaceous magmatic arc has been subdivided in Japan into three igneous zones: the SanIn, San-Yo and Ryoke belts; based on textural and mineralogic characteristics of the plutons. San-In granitoids have predominantly porphyritic to granophyric textures, show high magnetic susceptibility signatures resulting from the presence of magnetite, and are intruded for the most part into low pressure/low temperature metamorphic rocks. San-Yo granitoids, on the other hand, have predominantly porphyritic to equigranular textures, show low magnetic susceptibility signatures related to the presence of ilmenite, and are intruded into low pressure/low temperature metamorphic rocks as well. In contrast, Ryoke granitoids present equigranular to gneissose textures, show also low magnetic susceptibility, but are intruded into low pressure/medium temperature metamorphic rocks (Ishihara, 1981; Nakajima, 1996).

Available data for South Korea (amphiboles and biotites), while sparse, suggest in both Jurassic and Cretaceous plutons strong crustal contamination according to Ague and Brimhall (1988b) I-type discrimination diagram. Biotites indicative of less reducing conditions appear to be limited to the Cretaceous intrusions in the Kyongsang Basin. Halogen contents in amphiboles and biotites are low for the samples of the Jurassic plutons, but not in the Cretaceous plutons. The halogen contents for the amphiboles in the latter show low fluorine contents, not very different from those in Jurassic plutons, but relatively higher chlorine contents. Halogen contents in biotites are variably enriched in halogens, and are comparable to those in biotites from the Concepcion del Oro area.

248

Biotite compositions are, in contrast, significantly annite-enriched for all samples and rather dissimilar from biotite analyses in the Concepcion del Oro area (Figure 3.9.4).

Overall, there aren't clear similarities between the Cretaceous plutons of the Korean Peninsula and the different intrusive phases in the Concepcion del Oro area. There are, however, potential similarities between the Korean examples and mineralized midTertiary intrusions like the San Martin or the Las Cuevas systems in the Mesa Central, or the more mafic systems in northeastern Mexico. These similarities appear to be both metallogenic and tectonic. From a metallogenic point of view, Cu skarns associated with relatively equigranular, intermediate plutons are common in the Kyongsang Basin, while Pb-Zn skarns related to felsic porphyritic systems are more prevalent in the northeastern Ogcheon Fold Belt, and fluorine-rich systems are common in the central and southwestern Ogcheon Fold Belt (Shimazaki et al., 1981). With the possible exception of western Zacatecas, for which the nature of the basement is unclear, igneous systems and mineralization in northeastern Mexico and the Korean Peninsula appear to be the result of the interaction between different basement terranes and ascending calc-alkaline magmas in an active continental margin. Pb-Zn and F mineralization appear to be predominantly associated with a Precambrian basement, Cu-dominant mineralization maybe associated with a terrane containing more juvenile rocks. The comparison with mineralized systems in southwestern Japan, while incomplete and qualitative in nature, suggests a comparable correlation of terrane type and mineralization. Skarns with predominantly Pb-Zn mineralization appear more commonly in the Hida-Oki Complex and the adjacent Hida Marginal Belt of central Honshu, while Cu skarns appear with granitoids intruding the

249

Sangun-Renge and Akiyoshi nappes of southwestern Honshu (Nakano, 1998). The latter, while containing Paleozoic, predominantly clastic sedimentary sequences derived from Precambrian continental sources, they include also ophiolitic complexes and represent the addition of mafic source materials.

250

Comparative CI vs F plot in hornblendes and biotites from Jurassic

o

NW zone batholith

c

Wolagsan mass Nijeonri mass unnamed mass

• •'



O m • lotue at

CI, 0.4 F

1:1 line NW zone bathobth Boeum mass Wolagsan mass Bulgugsa mass

B A

Nijeonri mass



unnamed pluton

Eonyang mass

Average biotite compositions for Jurassic and Cretaceous plutons in South Korea, after Tsusue et al. (1981) i

Al-Annite

Al-Phlogopite

A

Jurassic plutons • NW zone batholith • Boeumtnass

s

Cretaceous utons AW o lags an mass • Bulgugsa mass ^Eonyang mass UNijeonri mass •unnamed mass Annite

Phlogopite 0.4

0.5 X Phlogopite

htype granitoid classification based on biotite composition for Jurassic and Cretacous piutons in South Korea, from Tsusue et al. (1981) after Ague and Brimhall (1988b) -SC (strongly contaminated)

i-scrP (strongly contaminated and

-wc

Jurassic plutons • NW zone batholith • Boeum mass Cretaceous plutons AWolagsan mass • Bulgugsa mass ^Eonyang mass (iNijeonri mass

(weakly -0.4

-0.2

log XMg/XFe

Figure 3.9.4:

Summary illustration of average halogen contents in amphiboles and/or biotites from Jurassic and Cretaceous plutons in South Korea (Tsusue et al., 1981), average biotite compositions and granitoid I-type classification, after Ague and Brimhall (1988b). Halogen contents in amphiboles are represented as empty symbols, while filled symbols correspond to biotites.

251

Granite-related mineralization in the Lachlan Fold Belt is also broadly related to an active continental margin and the interaction between ascending magmas and the nature of the surrounding crust. The continental crust of the Lachlan consists of three major lithotectonic assemblages (Coney, 1992). An older, early to middle Cambrian complex of greenstone belts with rock assemblages ranging from andesitic to ultramafic in composition with serpentinites or silicified peridotites present along faults and shear zones occurs mainly in the western part of the belt. A clastic sedimentary complex of Ordovician to Silurian age composed mainly of deep marine, quartz-rich grejwackes with lesser amounts of pelitic sediments and cherts, is present throughout the entire fold belt. Only in the northeastern part, submarine volcanics of intermediate to mafic composition belonging to the Molong Volcanic Arc, appear interbedded with the clastic sedimentary sequence. The deep marine sedimentary complex appears often broken up into fault-bound sections that are, for the most, detached from the underlying greenstone basement. Finally, a complex association of early/middle Silurian to Devonian marine volcanosedimentary sequences in grabens, terrigenous sediments and subaerial volcanics in horsts, coeval with widespread granite intrusion, are overlain by late Devonian-early Carboniferous "molasse-like", detritic to fluvial deposits.

The different subterranes into which the Lachlan Fold Belt has been subdivided constitute generally N-S elongated domains bound by steep fault zones with a thrust and/or

transpressional

component,

with

generally

low

pressure/low

to

medium

temperature metamorphism and complex deformation with a significant vertical component, characterized by upright, isoclinal folding of the Ordovician sedimentary

252

units. Only the Waga-Omeo Belt shows low pressure/medium to high temperature metamorphism characterized by amphibolite and greenschist-grade pelitic schists with local development of gneisses and intrusion of significant amounts of granitoids. In general, granitic intrusions are widespread throughout the Lachlan Fold Belt and account for 20 to 30 percent of outcropping lithologies (Coney, 1992; Zen, 1995).

Granitoids in the Lachlan Fold Belt have been classified based on their likely source lithologies into I-types, considered to have an infra-crustal igneous protolith, and S-types, that are thought to derive from mid-crustal sedimentary protoliths. I-type granitoids are generally hornblende- and biotite-bearing, metaluminous to weakly peraluminous granites, granodiorites and tonalites (Chappel and White, 1974; Chappel, 1996) associated with Cu, Mo and Au mineralization (Blevin et al., 1996). Their associated metal suites are widespread across specific terranes or structural domains within the Lachlan Fold Belt (Blevin et al., 1995). S-type granitoids are, in contrast, peraluminous to strongly peraluminous granites, granodiorites and rare tonalites that can contain cordierite, muscovite and/or garnet and are associated commonly with Sn and W mineralization. S-type granitoids and related metal associations appear restricted to specific terranes or structural domains (Blevin et al., 1995). According to this author, Itype granitoids are isotopically primitive, oxidized magmas that result from rapid igneous reworking of juvenile, igneous crust. S-type granitoids are isotopically evolved, oxidized to reduced magmas that are generated through anatexis or large scale assimilation of the upper crust. The latter author remarks, however, that relatively primitive but highly

253

fractionated and reduced I-tj^e granitoids are locally associated with Sn mineralization in the adjoining New England (Blevin et al., 1995).

From a mineralogic and metallogenic point of view, the different intrusive phases in the Concepcion del Oro show important similarities with the I-type granitoids of the Lachlan Fold Belt. Not only are the mineralogy and chemical data similar, with the further indirect confirmation through the discrimination diagram of Ague and Brimhall (1988), the type of mineralization is also comparable. Only the late phase IV analyses suggest a more evolved granitoid displaying strong crustal contamination and more reduced conditions that would make this phase more akin to S-type magmas.

254 Chapter IV Summary and discussion

4.1 Introduction

Broadly speaking, the intrusive rocks in the Concepcion del Oro area constitute a group of high K calc-alkaline quartz-monzonites, granodiorites and generally plagioclaserich, quartz-poor granites compositionally similar to many igneous suites in northeastern and western Mexico that are associated with subduction at an active continental magmatic arc. This model, known as the Coney-Reynolds-Keith model (Coney and Reynolds, 1977; Keith, 1978), and originally postulated to explain the migration of the magmatic activity the southwestern United States during the Tertiary, and the variation in the chemical and mineralogical characteristics of the resulting igneous rocks in relation with subduction of the Farallon Plate under the North America was applied to the extensive mid-Tertiary volcanic sequences in northern and western Mexico by Clark et al. (1979, 1982) and Cameron et al. (1980), among many others. Specifically, recognition of an eastward increase in K, trace and rare earth elements in the mid-Tertiary silicic calc-alkaline suite of Chihuahua, considered to be related to depth of magma generation and indirectly to the geometry of the Benioff zone (Cameron et al., 1980), and zonal arrangement of mineral deposit types by metallic suite (Clark and de la Fuente, 1978) are extrapolated to the Mesa Central and the Sierra Madre Oriental (Huspeni et al., 1984; Ruiz, 1988?). With the Concepcion del Oro area situated within the Mesa Central, east of the Sierra Madre Occidental calc-alkaline volcanic province west of the Eastern Mexican Alkaline Province, a general parallel has been suggested between these silicic calcalkaline suites and their associated mineralization, and the mineralized intrusives in the

255 study area (Megaw et al., 1988). Although this inference was made based on the midTertiary (Oligocene) magmatism, more recent work on the Eocene volcanic sequence of the Rodeo-Nazas area of Durango (Aguirre-Diaz, 1988; Aguirre-Diaz and McDowell, 1991) considered the magmatic activity and tectonic environment of the volcanic arc of western Mexico during the period to be analogous to that of the Oligocene. Many characteristics, however, of the intrusion centers in the Concepcion del Oro area suggest a number of differences with the general case of igneous activity in the Oligocene.

256 4.2 Whole-rock geochemistry

4.2.1 Major and trace element geochemistry

Early intrusive phases in the Concepcion del Oro area show major and trace element characteristics

that

define

a

trend

from

silica-undersaturated

to

quartz-poor

granodioritic/monzogranitic compositions and less evolved volcanic arc type magmas. Rare earth element data further indicate moderate enrichment but not significant changes due to fractionation or assimilation. All samples in the Concepcion del Oro area show a slight but characteristic concave pattern in the intermediate REE that suggests fractionation of amphibole in the source of the different magmas. Furthermore negative europium anomalies are present, but not very strongly so, suggesting some fractionation of plagioclase in addition to hornblende. Following Bouse (1995) work on Pb-isotopic crustal signatures and metallogenic characteristic of crustal provinces in Arizona, Th/U ratios between 2 and 4, as are documented for the Concepcion del Oro area intrusions, suggest that the magmas have both characteristics akin to island arc/ocean floor complexes and distal continental margin metasedimentary/metavolcanic sequences or non-recycled continental crust, while older, polymetamorphic continental crust have Th/U ratios higher than 4. Based on field observation and mineralogical inference also, several magmatic pulses with slightly differing chemistries have been recognized. The early intrusive phase, most notably the early phase of the Noche Buena intrusion but also the early phase la of the Concepcion del Oro intrusion, is noticeably more mafic and thus differs from most later phases. A mafic source for the early magmatic phase in the area is further suggested by

257 melanocratic inclusions, represented by sample I-l, in phase lib from Concepcion del Oro. But even inclusion sample I-l, similarly mafic in major element chemistry, does not have the high trace element concentrations shown by the early Noche Buena phase. In the Concepcion del Oro intrusion whole-rock chemical data indicate an evolution toward more evolved compositions in samples from the early phases (phases lb, Ila, lie). In the Providencia intrusion, microanalytical data also suggest such a trend in the porphyritic samples from the Gloria Estela area. The Concepcion del Oro phase lib sample, however, shows again a less evolved in composition than the other phase II samples, suggesting the introduction of a new pulse of magma. The later phases at Concepcion del Oro define, together with the main phases of the Providencia intrusion and late porphyry at nearby Gloria Estela area, and phase II at Noche Buena the main granodioritic/monzogranitic trend. Samples from the Santa Rosa igneous center appear, from their subvolcanic mode of occurrence and lower silica contents relative to previous phase, to constitute a third magmatic pulse. From other major and trace element characteristics, however, these can be seen part of the previous phase. Samples from the north flank of Providencia, samples SMPW-1 and SMPW-3, show microanalytical and, to an extent, textural characteristics similar to those of the Santa Rosa igneous center. Finally, major and trace element analysis of phase IV dikes at Noche Buena and probably the altered phase V dike at Providencia, indicate these dikes to constitute a late mafic magma pulse.

258 4.2.2 Isotope geochemistry

Isotope ratio graphs show varying degrees of enrichment in ^^Sr for all samples indicating a crustal source for the different rocks. The least evolved of the samples corresponds to the early Noche Buena phase, suggesting a significant mafic/alkalic component. Rather than a progressive increase in felsic crustal component, a hiatus is considered to separate the early phases of intrusion and the later ones in the Concepcion del Oro intrusion. This seems to apply, despite limited sampling, for Noche Buena as well. Absence of a positive-sloped isochron/errorchron in

87

Hfi

Sr/ Sr vs.

87

Hfk

Rb/ Sr between

samples from a given intrusion suggests assimilation rather than differentiation to be the predominant process in generating the intrusive suites in the Concepcion del Oro area. Values for '"^^Nd/'^'^Nd for the majority of samples in the area are depleted with respect to ChUR, in agreement with a crustal provenance. Differences between their chemical characteristics and Nd signatures show the early phase from Noche Buena intrusion to be not only mafic in composition but isotopically compatible with a mantle source, while similarly mafic late phase mafic dikes (Noche Buena phase IV dikes and possibly also phase V from Providencia) have depleted Nd signatures more characteristic of the more evolved main phase intrusives. Locally, chemically evolved main phase samples (Concepcion del Oro phase Ilia sample SMCM-9, Santa Rosa sample SMRN-1) have less depleted Nd signatures. This suggests contributions from isotopically less evolved sources to the magmas at different stages, both early and late. Overall, calculated epsilon Sr and epsilon Nd values and comparison with other intrusions and crustal sources in the Mesa Central, represented by the San Martm pluton in Zacatecas and lower

259 crustal xenoliths from San Luis Potosf (Graf, 1997; Ruiz et al., 1988; Chesley & Ruiz, unpublished data) suggest the intrusives are derived from a mafic source with variable but not significant degrees of crustal contamination. It is worth noting that on a ESr vs.

eNd diagram, the trend suggested by the intrusive samples from the Concepcion del Oro area and the San Martm pluton, is much shallower than a potential mixing line between the mantle array and the garnet paragneiss sample LC-6 from San Luis Potosf, possibly suggesting a different or an additional crustal source both for the more evolved intrusives in the Concepcion del Oro area and for the San Martin pluton. Oxygen isotopes show values within the range of granitic rocks and, in the main, spanning the range of I-type granites (O'Neil et al., 1977). Main and late phases show consistently higher values than early phases with some late porphyritic phases suggesting, by comparison with isotopic values for the carbonate host rocks (Sawkins, 1965; 1966), assimilation of country rock.

260 4.3 Mineral geochemistry and derived intensive variables

4.3.1 Mineral compositions

Plagioclase analyses from the different intrusive phases in the Concepcion del Oro area lie in general within the field of andesine compositions and share early, anorthiterich compositions. The variation in plagioclase composition as a function of igneous phase, however, suggests that different magma pulses, marked by increases in mean anorthite content, occur in different intrusions at different points in the magmatic sequence. In the case of the Concepcion del Oro, phase lib appears to mark a new magmatic pulse. In the Providencia intrusion, both phase III and phase FVa have higher mean anorthite contents than the preceding phase and may indicate each a new pulse. At Noche Buena, however, the steadily decreasing mean anorthite content in plagioclases between phase I and II suggests a single magmatic pulse. The field evidence does not support the inference, as the outcrop areas between phase I and phases n and III are almost separate and in sharp contrast. Potassium feldspars are generally close to the orthoclase end-member in all intrusive centers, with mean orthoclase contents above Or^'^. Mean orthoclase values below Or^° correspond, in the case of the Concepcion del Oro and Providencia intrusions to late phases (phase Illb aplite in the former, and phase IV samples in the latter). The Santa Rosa igneous center is also an exception. The analyzed sample from this center shows not only interstitial but also phenocrystic K-feldspar with around 25% to 30% albite component and further intermediate compositions between the orthoclase vertex and the plagioclase field forming what appears to be a liquidus line toward a significant cluster of

261 plagioclase analyses in the oligoclase sub-field. This has been also observed in phase IVb sample from the Providencia intrusion.

The composition of the pyroxenes indicate, in general, relatively mafic compositions. Magnesium-rich pyroxenes within the calcium-rich, magnesian end of the augite field are present in the early phases of intrusion in the Concepcion del Oro area. In phases II and III more calcium- and magnesium-rich compositions are encountered, with compositions nearing the diopsidic endmember within the more magnesian end of the salite field. In contrast, phase FV samples from the Providencia intrusion show more iron-rich compositions within the salite field. General amphibole compositions are generally within the edenite field

with

Mg/Mg+Fe ratios indicating intermediate to moderately iron-enriched compositions. Only rarely hastingsitic compositions were encountered, mostly as inner zones and/or relicts within the edenitic amphiboles. While the compositional data lead to conclude that amphiboles in the majority of the Concepcion del Oro area intrusives are likely to be affected by re-equilibration, some of the geobarometric estimates calculated from them suggest pressures more associated with magmatic conditions, rather than near surface reequilibration. Halogen concentration values in Concepcion del Oro area intrusive amphiboles are relatively low, rarely exceeding 0.5 percent combined fluorine and chlorine, with fluorine predominating over chlorine. No clear difference was observed in either concentration or proportion of fluorine to chlorine between the majority of edenitic amphiboles and relict hastingsitic amphiboles. The total amount of halogens contained in the amphiboles appears to increase from the early to the late phases from about 0.1

262 percent to 0.7 percent, with the highest fluorine concentrations present in phase IV sample SMPW-1 from the Providencia intrusion, while the highest chlorine contents occur in phase III samples from Concepcion del Oro and Providencia. Halogen contents in the analyzed amphiboles reflect the conditions of either the intrusive rocks as they crystallize, or the subsolidus environment and the fluids possibly coexisting with these minerals. Biotite analyses from the different intrusive phases are generally aluminum-poor, magnesium-rich in composition with fluorine as the predominant halogen and variable amounts of chlorine. The siderophyllite contents are for the most part below 0.2 for the majority of intrusive phases, except for phase FV samples from the Providencia intrusion and the Santa Rosa igneous center. Correspondingly, biotites from these late phases are more annite-rich, but both fluorine- and chlorine-poor in absolute terms. Magnesium-rich biotites are associated with mafic rock compositions, on the one hand, but also with potassic alteration in porphyry-style mineralization. As pointed out in previous paragraphs, the intrusives in the Concepcion del Oro area have major, trace and isotopic characteristics that suggest comparatively mafic compositions and magma sources. Aluminum enrichment in phase FV samples of the Providencia intrusion and in the Santa Rosa igneous center suggest a more crustal affinity of these late phases. Since biotite, however, is often subject to re-equilibration under subsolidus and hydrothermal conditions, the analyzed biotites in the early phases are more likely to be indicators of these later stages. Halogen contents of biotites in the different intrusive phases of the Concepcion del Oro area is mainly represented by fluorine, with minor and variable

263 amounts of chlorine. Although fluorine and chlorine contents appear to increase from phase I to III in the Concepcidn del Oro and Providencia intrusions, overall the overall concentrations remain relatively constant across all intrusive phases, averaging near 1 percent. Whether primary magmatic or secondary, halogen contents in the different samples and intensive variables derived from them are useful, either as indicators of the intrusive rocks, or of the conditions in the subsolidus or hydrothermal environment.

264 4.3.2 Intensive variables Temperature estimates, derived from plagioclase rims in contact with interstitial Kfeldspar are, by the nature of the intergrowth chosen for analysis, a minimum value that reflects either final crystallization or subsolidus re-equilibration, since the plagioclase/Kfeldspar contact may be a primary rim or a secondary overgrowths. Temperature estimates from individual plagioclase/K-feldspar pairs, were averaged for any given sample. Mean temperature estimates for samples from phases I through III lie between 650°C and 830°C and appear to fluctuate within those margins. There is, however, a significant temperature increase in the phase IVa sample in the Providencia intrusion, as well as the Santa Rosa igneous center, to above 1000°C. Variations in the average temperature estimates as a function of igneous phase for the different intrusions seem to follow conmion paths that suggest a common temporal evolution for all of them. Although the calibration underlying these estimates is pressure dependent, both textural constraints and depth of emplacement derived from the regional stratigraphy allow the reasonable assumption of a standard pressure estimate of 1 kbar as a benchmjirk for comparison between the different intrusions. Although most amphiboles are edenitic in composition with only minor hastingsitic relicts encountered, the range of geobarometric estimates calculated from them suggest either re-equilibration to take place over a range of pressures that are not entirely consistent with near-surface conditions or values that, qualitatively, indicate both deeper magmatic conditions as well as near-surface subsolidus re-equilibration. The first appears not to be in agreement with the local and regional geology, since the only area in the

265 vicinity with recognized metamorphism, the Sierra de San Julian to the west of Concepcion del Oro, shows outcrops with low pressure/low temperature metamorphism (lower greenschist facies of the Taray formation; Tardy, 1980). The range of calculated pressure estimates from edenitic amphiboles are often below the lower limit of 2 kbars for which the geobarometric calibrations are applicable but isolated values within that range and qualitative evaluation of all the data can still yield some insights into the conditions of emplacement and evolution of the different intrusions. Two recognizable clusters of values are recognizable from comparison across igneous centers: a cluster at less than 1 kbar pressure, and a cluster between 3 and 4 kbar pressure, all obtained from edenitic amphiboles. Relict hastingsitic amphiboles show higher pressure estimates, above 4 kbars and as high as 6.5 kbar pressure. While it is unclear whether this variation in the obtained pressure estimates is geologically meaningful, the lower pressure estimates from edenitic amphiboles broadly agrees with the regional stratigraphy. This would suggest that the geobarometric calibrations are qualitatively useful and the overall evaluation of the obtained values may reflect the ascent of the magmas in the Concepcion del Oro area from deeper mid-crustal chambers to the final emplacement level within the Mesozoic stratigraphic sequence. In that sense, pressure estimates for the Santa Rosa igneous center yield values that range from 3.1 kbars to 6.6 kbars, with edenite values generally between 3.7 and 3.8 kbars and hastingsitic relicts showing values from around 5 kbars to over 6 kbars. Because of the relative lack of alteration in the sample, textural context and subsolidus re-equilibration appear not to play such an important role. The qualitative value of the geobarometric

266 estimates from edenites can't be entirely ruled out, and the inference of a mid-crustal residence for the magmas in the Concepcion del Oro area prior to ascent and emplacement is supported.

267 4.3.3 Volatile contents Halogen values in both amphibole and biotite analyses from Concepcion del Oro area intrusives appear to increase between phase I and III, with fluorine to chlorine ratios remaining in both minerals roughly similar, between 2:1 and 5:1, but increasing substantially in phase IV analyses from the Providencia intrusion and the Santa Rosa igneous sample. The increase is more marked in the halogen contents of amphiboles from the Providencia phase IV samples relative to biotites, with a fluorine to chlorine ratio of 40:1 in the former and 20:1 in the latter. In contrast, the Santa Rosa analyses both amphiboles and biotites have a fluorine to chlorine ratios about 5:1. Overall halogen concentrations in amphiboles are relatively low, rarely exceeding 0.5 percent, while in biotites concentrations are around 1 percent and only occasionally higher. Indirectly, fluorine contents in biotites are also used as an indirect measure of the degree of crustal contamination of the igneous rocks and, in conjunction with the phlogopite ratio as a measure of the oxidation state of the magma, it helps discriminate the possible source of the intrusion (Ague and Brimhall, 1988b), standing as a proxy particularly for phases or samples that could not be characterized through major and trace geochemistry. In the case of the intrusives in the Concepcion del Oro area, biotite analyses from the different phases indicate all intrusive phases to be I-type granitoids, in agreement with major element data, and describe a path of increasing crustal contamination from phase I to phase II samples and increasingly reduced conditions from phase II to phase IV.

268 Estimated oxygen fugacity values calculated for the different intrusive phases in the Concepcion del Oro at 1 kbar for comparative purposes, based on the regional stratigraphic column as well as the qualitative geobarometric result of a large cluster of pressure estimates around as well as below 1 kbar, describe, in absolute terms, a path of increasing oxygen fugacities between phase I and phase II samples, followed by a marked decrease from phase II to phase III and an even stronger increase from phase III to phase IV, with only the late phase IVb sample SMPW-3 from the Providencia intrusion showing a decrease in oxygen fugacities to around the values of phase II intrusives. As the annite to K-feldspar plus magnetite reaction is mainly temperature-dependent, it is by comparison with different oxide and oxide-silica buffer reactions that a better understanding of the oxidation state of the different intrusive phases in the petrological context becomes clear. In this context, phase I samples, with an oxygen fugacity estimate just below the wiistite-magnetite boundary are relatively reduced. Phase II samples are more strongly reduced, while phase III samples are clearly more oxidized. The oxygen fugacity estimates for phase III samples are above the wiistite-magnetite reaction boundary but below the fayalite/quartz-magnetite reaction boundary. Finally phase IV samples from the Providencia intrusion are the more strongly reduced of the different intrusive phases; their oxygen fugacity estimates being further within the wiistite field than those of phase II samples. The scant data from the Noche Buena intrusion (analyses were only possible for phase 11 sample SMNA-2 from this intrusion) and Santa Rosa igneous center fit remarkably well the variation path in oxygen fugacity values described by the data from the Concepcion del Oro and Providencia intrusions. It is also worth

269 noting that in general the Concepcion del Oro intrusion is less reduced than the Providencia intrusion. This reinforces the view that, while the different intrusive systems in the Concepcion del Oro area appear to be closely related and share a common evolutionary path, each have individual characteristics that may influence mineralogy and alteration assemblages, as well as associated mineral deposits. Calculated water fugacity values also describe, in absolute terms, an increase in values between phase I and phase II samples of the Concepcion del Oro and Providencia intrusions, followed by a marked decrease in phase III samples and a strong increase in phase rv samples (Providencia intrusion and Santa Rosa igneous center), although phase IVb sample SMPW-3 in the Providencia intrusion has again lower water fugacity values, closer to those of phase II samples. The average value for the Noche Buena phase II sample SMNA-2 is similar to that of phase lib sample SMCM-6 in the Concepcion del Oro intrusion. The Santa Rosa igneous sample has a water fugacity estimate similar to that of the Providencia phase IV intrusive samples. The comparison between the Concepcion del Oro and Providencia intrusions reveals also that, in absolute terms, the Concepcion del Oro system has higher water contents in the early phases I and 11. Both intrusions show a decrease to similar values in the phase III samples, but the Providencia system shows the highest water contents in phase IV, while the late aplitic phase Illb from Concepcion only reaches a water fugacity value similar to the phase II samples.

270 4.4 Summary The different igneous centers in the Concepcion del Oro constitute a group of granitoids with a likely common origin and igneous evolution, as well as comparable characteristics. Trace element and isotopic evidence suggest these intrusions to have a common mafic source, of probable mantle affinity. Mineralogical and major element whole-rock data, as well as microanalytical data clearly indicate the different intrusions in the area to be I-type granitoids in the classic sense of Chappel and White (1974). By comparison with Nd and Sr isotopic data from lower crustal xenoliths in the region (Ruiz et al., 1988), the magmas indicate varying degrees of assimilation of crustal material, although it is possible that the felsic gneisses present in the lower crust may not be the only crustal lithology with which they have interacted. The available sampling, major element geochemistry and detailed microanalj^ical data suggest at least three magmatic pulses. The two main pulses in the Concepcion del Oro and Providencia intrusions, with which the more limited sampling in the Noche Buena and Santa Rosa centers coincide, are directly related to the different mineralization events in the area. In both the Concepcion del Oro and Providencia intrusions, phases I and II describe one pulse characterized by a more mafic, relatively oxidized magma with low contents in halogens that evolves as it becomes more contaminated with crustal material, more enriched in fluorine relative to chlorine, and more reduced. Phase III intrusives, on the other hand, are more oxidized than those in the previous pulse, but show also significant crustal contamination and relatively high halogen contents comparable to those of the preceding phase. Phase IV intrusives are similary crustal in

271 character but are significantly more reduced and their overall halogen contents decreases and is strongly dominated by fluorine. Finally, a late magmatic pulse consisting of mafic dikes with major and trace element characteristics suggestive of a crustal, rather than mantle source, does not appear to be related to significant alteration and mineralization in the area. Qualitative evaluation of pressure estimates obtained through the geobarometric calibration of Schmidt (1992) suggests, in spite of the results being outside the lower limit of applicability of the calibration, a common level of emplacement at less than or around 1 kbar pressure, which is supported by the regional geology. However, it also shows a cluster of values between 3 and 4 kbars from isolated phases in the Concepcion del Oro, Providencia and Santa Rosa igneous centers, that points out to the possibility of a mid-crustal residence for the magmas in the area. Finally, oxidation state as a function of temperature and water content estimates, while describing a relatively similar evolution for the two main intrusions: Concepcion del Oro and Providencia, they indicate also differences that are unique to each of the intrusive centers. In the Concepcion del Oro intrusion, early, mildly reduced intrusives belonging to phase I (T ~ 700°C to 800°C; oxygen fugacity around the wiistite-magnetite buffer reaction boundary, log f02 ~ -18) with relatively low water contents (log fH2o ~ 1.5) become hotter, more reduced and water-rich during phase II (T ~ 750°C to 850°C; oxygen fugacity value within the wiistite field, log f02 between -16 to -15, log fH2o ~ between 1.7 and 2). Phase III marks, however, a cooler, more oxidized but dry intrusive (T ~ 600°C to 700°C; oxygen fugacity between the wiistite-magnetite and

272 fayalite/magnetite-quartz buffer reaction boundaries, log f02 —18 to -21; log fnio ~ between 1.1 and 0.7) that evolves toward more reduced, water-enriched conditions in the latest stage. In contrast, the Providencia intrusion has a similarly hot and reduced phase II intrusive (oxygen fugacity value within the wiistite field, log fOi between -16 to -14) but with lower water contents (log fmo ~ between 1.4 and 1.6), that precedes the more oxidized, cooler and drier phase III (oxygen fugacity between the wustite-magnetite and fayalite/magnetite-quartz buffer reaction boundaries, log f02 ~ -19; log fH2o ~ 0.7). However the phase IV samples in the Providencia are significantly hotter and reduced, with significantly higher water contents (T ~ 850°C to 1050°C; oxygen fugacity well within the wiistite field, log f02 ~ -11 to -14; log fH2o ~ between 1.6 and 2.8). The available data from the Noche Buena intrusion fit with the phase II characteristics of the Concepcion del Oro intrusion (relatively hot, reduced and waterrich), although the Noche Buena phase 11 sample has a higher intrinsic value in oxygen fugacity around log f02 —14. The Santa Rosa igneous sample shows again strong similarities to the phase IV samples from the Providencia intrusion in that it appears to be also a hot, reduced and wet magma (T ~ 1050°C; oxygen fugacity well within the wiistite field, log f02 ~ -11; log fH2o ~ 2.4).

273 4.5 Discussion The different intrusives in the Concepcion del Oro area conform to a general trend of often mineralized, high K calc-alkaline intrusive and volcanic centers in central and northern Mexico, that are related to the mid-Tertiary volcanic arc of western Mexico (Cameron et al., 1980; Clark et al., 1982). However the more intermediate composition of the igneous suite and the comparatively mafic character of the sources for the Concepcion del Oro area intrusions sets them apart from the other mid-Tertiary centers. In contrast, there is sufficient evidence to relate the intrusives in the Concepcion del Oro area to the dioritic intrusions in the central sector of the Sierra Madre Oriental (Cerro Pedregoso, El Saltillito, Rocamontes, San Rafael and Cerro Prieto). The chemical trend toward silica-undersaturated compositions, trace element signatures that are not closely related to more evolved, continental granitoids, and Sr-Nd isotopes showing relatively minor participation of crustal sources to the magmas, make this relation plausible. However the few radiometric dates available for these mafic intrusions indicate an upper Cretaceous age, thus making a temporal association unlikely. However these intrusions and their root zones would belong to the crustal assemblage in the Concepcion del Oro area. Furthermore, to the west of the study area, the San Julian uplift contains, in addition to mafic, upper Cretaceous intrusions, the tectonized remnant of a volcanic arc of intermediate composition (Anderson et al., 1991; Jones et al., 1995). The latter, contains a sequence of lavas, tuffs and volcanoclastic sediments of unknown thickness, that underlies but partially interfingers with a pre-Upper Jurassic redbed and evaporitic sequence (the Taray and La Joya formations). It can be speculated, that it is these

274 intermediate and mafic lithologies, all of them occurring within the upper crust and possibly also the middle crust, that are the relevant host rocks that interact with the ascending magmas in the Concepcion del Oro area. The observed, relatively flat trend in the £Sr-8Nd diagram suggests a source material with a relatively high eSr but not strongly negative 8Nd signature, such as an intermediate-felsic volcanic or a volcanoclastic sediment. The lower crustal xenoliths from San Luis Potosi maars (Ruiz et al., 1988) include both felsic paragneisses but also mafic granulites/orthogneisses, and also suggest a partially mafic lower crust, which can not be discarded as possible candidates for crustal assimilation end-members. The mineralization types recorded for the area of Concepcion del Oro, correlate well with the chemical characteristics of the different phases of intrusion. Copper and copperiron skams, as well as limited porphyry copper-style mineralizations appear to be largely associated with the first, moderately to strongly contaminated I-type, only mildly reduced magmatic pulse. Both skam and porphyry-style mineralization are more commonly related to phase II intrusives, but, in the case of the skams, they can be present with phase I intrusives. Examples of these styles of mineralization can be found in Concepcion del Oro (Cu-Fe ± Au skams at Aranzazu and Tajo de Azules, among others; massive oxide Fe ± Cu-Au skam in the roof pendants of Promontorio, Animas y El Carmen), Providencia (porphyry copper in the Gloria Estela and El Cobre areas; also Cu-Fe ± Au skams associated with them) and Noche Buena (porphyry copper in the Aurora-Amarillas area; Cu-Fe ± Au skams at San Francisco del Alto). Lead-zinc-silver mineralization in

275 contrast appears to be associated with the strongly contaminated and reduced, I-type granitoids associated with the second magmatic pulse. This mineralization type is present in three different forms; Pb-Zn-Ag ± Cu skams; Pb-Zn-Ag ± Au carbonate replacement pipes and sometime mantos; and stockwork/disseminated Pb-Zn-Ag-Au ± Cu replacements associated with breccia pipes. In the Concepcion del Oro intrusion, base metal mineralization associated with the second magmatic pulse is represented by the La Perlita and Cabrestante Pb-Zn-Ag ± Cu skams, as well as several minor Pb-Zn-Ag ± Au carbonate replacements. In the Providencia district, the significant Pb-Zn-Ag ± Au carbonate replacement pipes of San Eligio, Albarradon, Animas, Zinc West and Salavema, among the more important examples, constitute one of the main mineralized areas in the area. In the Noche Buena intrusion, this mineralization type is represented by the Mina Vieja, Noche Buena and Santo Nino Pb-Zn-Ag ± Au carbonate replacement pipes, and several smaller prospects. The stockwork/disseminated Pb-Zn-Ag-Au ± Cu replacement type mineralization is present, among the studied intrusive centers, in the Santa Rosa igneous center. And, although not studied in detail, the Penasquito deposit appears to belong in this mineralization tj^e (Anonymous, 2003). From a metallogenic point of view, the important copper resource represented by the skams in the Concepcion del Oro intmsion, are, to an extent, an anomaly for the region. While it is tme that copper is present in small amounts in many of the intrusion-related mineralized systems in the Mesa Central and Sierra Madre Oriental, it only constitutes an important commodity in some districts: San Martin, Zacatecas; Velardena, Durango; Sierra Almoloya and San Pedro Corralitos, in Chihuahua (Megaw et al., 1988). The

276 limited geochemical data for some of lead-zinc-silver, tin and fluorite deposits, suggest that the associated igneous rocks are strongly contaminated and reduced granitoids. The intrusives in the Concepcion del Oro area, while being more mafic than other suites in the region, are, for the most part, also strongly contaminated and, in the late phases reduced. Modelization of optimal conditions for copper mineralization based on experimental as well as theoretical considerations (Candela, 1995), suggest, however, that igneous suites characterized by hot, water-rich and oxidized magmas that have a significant mantle component ("primitive" in isotopic terms) and are emplaced at higher levels of the crust are more likely to efficiently mobilize copper out of the magma and into solution, and give rise to a porphyry copper type mineralization. While this is not entirely the case for the intrusives in the Concepcion del Oro area, several of the conditions considered by the author are partially met in several cases. Specifically, the author mentions emplacement of the magma at confining pressures below 2 kbars, high ratios of initial water concentration to water solubility in the melt and presence of chlorine as a ligand for copper, and high oxygen fugacities, above the fayalite/quartz-magnetite buffer assemblage in the magma, in order to maximize exsolution of a magmatic volatile phase that is able to coalesce and remove metals from the igneous rock through destabilization of primary sulfides. The intrusives in the Concepcion del Oro area fulfill most of these theoretical conditions with the exception of the reducing oxidation state of all the igneous phases. As an alternative, the presence of at least two magmatic pulses that represent early, relatively hot and oxidized, dry intrusives, followed by hotter, more reduced but wetter magmas, may well suffice for the efficient extraction of copper from both host

211

rocks within the uppermost crust and the intrusive rocks themselves. Finally, although not studied with any level of detail in the present work, the reactivity of the immediate host rocks to the majority of intrusives in the Concepcion del Oro area, represented by the Mesozoic carbonate sequence of the Sierra Madre Oriental and Mesa Central of Mexico, can not be understated, as the significant number and importance of mineralized skams and high-temperature, carbonate-hosted chimneys and mantos in the region attest (Megaw, 1988, 1998; Megaw et al., 1988; among others). The Concepcion del Oro igneous suites appears to fulfill many of the necessary conditions that allow efficient extraction and transport of base metals, in particular copper, from their magmas. The crustal assemblage in which they intrude includes mafic and intermediate igneous host rocks at relative high levels of the crust. The contribution of the mantle to the source of magma in the Concepcion del Oro igneous suites is significant. The metallogenic implications are, that instead of a metal suite characterized by lead, zinc and silver, or tin and fluorine, such as those encountered in the more felsic magmas of the Mesa Central and Sierra Madre Oriental, the Concepcion del Oro magmas show a metal suite dominated by copper ± gold, particularly in the early phases. This is likely the result of higher Clarke values for copper and gold imparted to them by their mantle component, as well as available to them in the mafic host rock lithologies. This allowed the concentration of a significant copper resource in a region otherwise known for mineralizations characteristic of more evolved, crustal magmas.

278 Chapter V Conclusions The Concepcion del Oro, Providencia, Noche Buena and Santa Rosa intrusions, and their associated mineral deposits, constitute a coherent igneous and metallogenic area. It is characterized by a sequence of igneous bodies that define three magmatic pulses. The two main pulses are directly related to the different mineralization events in the area. The first pulse is characterized by a more mafic, relatively oxidized magma with low contents in halogens that evolves as it becomes more contaminated with crustal material, more enriched in fluorine relative to chlorine, and more reduced. The second pulse is at first more oxidized than the phases in the previous pulse, but, like the later phase in the previous pulse, it shows also significant crustal contamination and relatively high halogen contents. It becomes significantly more reduced, its overall halogen contents decreases and becomes strongly dominated by fluorine. In each pulse, water contents increases as it evolves. Mafic, post-mineralic dikes constitute a third magmatic pulse. Through whole-rock geochemistry and microanalysis of constituent minerals, common sources and parallel igneous evolution for the different intrusions are documented, including the suggestion that the magma responsible for the later pulse in three of the four igneous centers: Concepcion del Oro, Providencia and Santa Rosa, appears to have resided at mid-crustal levels prior to ascent and emplacement in the upper crust. From the detailed chemical characterization of the intrusives, inferences can be made to the associated mineral deposits in the area. This dissertation offers a geochemical framework of the igneous rocks associated with the intrusive-related base-metal deposits in the area, and suggests parallels to other mineralized systems in the Mesa Central.

279

APPENDICES

280

APPENDIX I

MAJOR ELEMENT, MESONORMATIVE AND CIPW NORM COMPOSITIONS FOR INTRUSIVE CENTERS IN THE CENTRAL SECTOR OF THE SLERRA MADRE ORIENTAL, MEXICO.

Mesonormative and CIPW norm calculations were obtained from the geochemical data handling software package NewPet by Daryl Clarke, Memorial University of Newfoundland. The mesonormatiave calculation was derived from the program MSONRM by M.H.F.Kosinowski. CIPW norm calculation module in the software came from University of Tasmania. The mineral abbreviations for the mesonormative data correspond to the following minerals and composition: Q - Quartz Si02; C - Corundum AI2O3; Mt - Magnetite Fe^''Fe"^™204; Cc - Calcite CaC03; Ab - Albite (Na,K)AlSi308; Bi - biotite KMg3[AlSi30io](OH)2; Hm - Hematite Fe203; Ap - Apatite Ca5(P04)3F; Or - Orthoclase (K,Na)AlSi308; Hb - hornblende ();I1 - Dmenite FeTiOs; R - Rutile (Ti02);An Anorthite (Na,Ca)AlSi208. The mineral abbreviations correspond to the following minerals and composition: Q Quartz Si02; C - Corundum AI2O3; Z - Zircon ZrSi04; Or - Orthoclase (K,Na)AlSi308; Ab - Albite (K,Na)AlSi308; An - Anorthite (Na,Ca)AlSi208; Lc - Leucite KAl(Si03)2; Ne - Nepheline (Na,K)(Al,Si)204; Kp - Kaliophilite AlSi04; HI - Halite NaCl; Th Thenardite Na2S04; Nc - Na Carbonate Na2C03; Ac - Acmite NaFe(Si02)3; Ns - Na Metasilicate Na2Si03; Ks - K Metasilicate K2Si03; Di - Diopside Ca(Mg,Fe)(Si02)3; Wo - Wollastonite CaSi03; Hy - Hypersthene (Mg,Fe)Si03; 01- Olivine (Mg,Fe)2Si04; Cs DiCaSilicate Ca2Si04; Mt - Magnetite Fe"^''Fe"^'"204; Cm - Chromite Cr204; Hm Hematite Fe203; II - Ilmenite FeTi03; Tn - Sphene CaTiSiOs; Pf - Perovskovite CaTiOs;

281

Ru - Rutile Ti02; Ap - Apatite Ca5(P04)3F; Hyd - Hydraphane Si02(H20)x; F1 - Fluorite CaF2; Pr - Pjrite FeS2; Cc - Calcite CaCOs; Mag - Magnesite MgCOa; Sid - Siderite FeCOa; Spod - Spodumene LiAl(Si03)2.

282

CONCEPCION DEL ORO Table 1: Major oxides, mesonormative and CIPW norm composition of igneous phases in the Concepcion del Oro intrusion. I-l

SMCA-5

SMCA-8

SMCS-7

SMCM-6

SMCM-9

54.30

62.583

0.99 16.40

0.639

64.10

67.30

0.51 15.30

0.449

60.155 0.792

62.58 0.699

16.641

SMCM-10 SMCM-

11 SiOz TiOz

65.998

76.481

15.771

0.513 15.463

11.988

6.811

5.465

4.349

0.686

0.126

0.067

2.047

1.518

0.02 0.175 0.70

0.148

7.30

15.893 5.066

4.64

15.856 2.659

MnO

0.14

0.055

0.10

0.024

MgO CaO

3.99 6.86

1.975

0.75

4.43

1.57 4.27

0.167 2.365

2.998

5.309

4.739

3.849

NazO

4.13

4.433

3.58

4.50

3.50

3.427

3.427

2.552

K2O

2.42

3.49

3.76

4.038

2.802

3.346

3.89

5.436

P2O5

0.32

0.266

0.24

0.212

0.368

0.313

0.225

0.013

1.65 98.50

0.82

0.86

99.65

0.15 98.22

99.646

1.10 99.91

0.85 98.963

0.43 99.729

1.25 99.449

Q

-1.18

10.06

17.10

18.27

17.06

18.13

0 6.42

0

0

0

0

0

22.03 0

39.35

C

4.46

4.08

2.34

5.99

4.81

3.83

0.60

AI2O3 total

LOI Total Mesonorm

Mt

0.66

Cc

0

0

0

0

0

0

0

0

Ab

34.98

37.55

30.32

38.12

29.65

29.03

29.03

21.62

Bi Hm

-9.96

-6.08

-1.33

5.20

1.30

1.84

0.88

0

0

-3.49 0

0

0

0

0

0

Ap Or

0.76 20.79

0.63

0.57

0.50

0.87

0.74

0.53

0.03

24.58

38.12

24.74 7.00

13.11 7.55

18.88

Hb

24.44 15.08

21.75 6.89

31.54 0

11 R

0.94 -0.40 6.12

0.48 -0.18

0.43

0.75 -0.40

0.49 -0.23

0.14 -0.04

14.04

12.99

3.39

98.31

99.13

98.17

An Total

96.59

21.03 0.61 -0.20 6.02 98.64

9.50 97.90

-0.10 8.73 98.69

18.87 98.65

11.03 0.66 -0.30

283

Table 1 (continued) I-l

SMCA-5

SMCA-8

SMCS-7

19.12 0

SMCM-6

SMCM-9

SMCM-10 SMCM-

11 CIPW norm

Q

3.96

13.18

19.07

C

0

0

0

z

0.03 14.34

0.03 20.66

0

0.04

0.03

0.03

0.03

0.02

Or

22.30

23.92

16.60

19.82

23.05

32.19

Ab

34.94

37.51

30.29

38.07

29.61

29.00

29.00

21.59

An

19.09

13.20

14.59

11.19

21.49

17.83

15.37

3.60

Lc

0

0

0

0

0

0

0

Ne

0

0 0

0

0

0

0

0

0

15.63

18.20

0

0

21.69 0

38.99 0.59

Kp

0

0

0

0

0

0

0

0

HI

0

0

0

0

0

0

0

0

Th Nc Ac

0 0

0

0

0

0

0

0 0

0 0

0 0

0

0 0

0

0 0

0 0 0

0

Ns

0

0

0

0

0

0 0

0

0

Ks

0

0

0

0

0

0

0

Di Wo

10.27

5.81

4.12

2.11

2.28

0 3.22

2.07

0

0

0

0

0

0

0

0

0

Hy

5.19

2.24

2.04

0.90

4.85

3.61

2.83

0.44

01

0

0

0

0

0

0 4.11 0

0 4.08 0

0 1.81

0 0

0

0 5.91

0 0

0

4.62 0 0.13

0 0.42 0

0.24

5.99 0 0

0 3.69 0 0.09

0.13

0.97 0

0.85

1.33 0

0.97 0

0.28

0

1.50 0

0

0

0

0

0

0

Cs Mt Cm Hm

0 0.35

11 Tn

1.88 0

1.21 0

Pf

0

0

Ru Ap Hyd F1 Pr Cc Mag Sid Spod Total

0 0.36

0

0

0

0

0

0

0

0

0

0.76

0.64

0.57

0.51

0.88

0.75

0.54

0.03

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0 0

0

0

0 0

0

0 0

0 0

0

0

0

0

0 0 98.03

0

0 0

0 0

0 0

0 0

0 99.32

0 98.28

0 0 0 0

0 0

0 96.74

0 98.84

0

0

0

98.89

98.87

98.53

0

284

Providencia, Noche Buena and Santa Rosa Table 2: Major oxides, mesonormative and CIPW norm composition of igneous phases in the Providencia, Noche Buena and Santa Rosa igneous centers.

Si02

SMP-l 64.83

SMPV-1 66.739

SMNN-1 48.187

SMNC-4 61.917

SMNC-5 56.47

SMNC-6 57.656

SMRN-1 62.153

SMRN-2 65.364

Ti02

0.554

0.394

1.403

0.731

1.115

0.97

0.721

0.68

AI2O3

15.368

10.493

15.546

15.583

1.206

10.261

16.175 7.646

15.586

4.329

15.687 5.505

5.724

0.015

0.184

0.115

0.161

MgO

0.046 2.069

6.663 0.092

14.567 3.206

4.758

2.057

3.324

2.89

0.114 1.972

CaO

4.089

0.768 7.434

9.746

5.181

6.874

5.812

5.157

3.514 4.031

F62O3 total MnO

Na20

2.992

3.866

K2O

4.037 0.219

2.821

2.786 5.498

0.095

0.567

P2O5

LOI Total

0.046 0.765

3.892

3.898

3.221

3.80

3.498 0.312

2.957

2.801

3.605

3.89

0.462

0.358

0.32

0.351

1.93

6.15

1.20

1.33

1.45

3.56

0.89

3.24

100.463

99.981

100.136

100.225

100.532

99.609

100.039

99.654

22.32

-28.45

0.46 0

12.37 0

10.43 0

17.22 0 2.82

Mesonorm

Q

0

-3.85 0

0

10.01 0

Mt

3.81

1.06

9.03

4.84

6.73

5.86

5.03

Cc

0

0

0

0

0

0

0

0

Ab

25.34

32.75

23.60

32.97

33.02

27.28

32.19

34.14

Bi

3.83

-62.28

-42.95

-8.76

-12.69

-1.45

-9.09

-6.15

0

0

0

0

0

0

0

0

Ap Or

0.52 21.31

0.22

1.34 60.64

0.74 26.36

1.09

0.84

25.75

17.47

0.76 27.19

0.83 27.10

Hb 11

6.75 0.53

91.47 1.33 -0.13

25.75 0.69

39.02

19.81 0.92 -0.38

25.83 0.68 -0.18

14.61 0.65

-17.28

6.29

13.07

6.10

5.14

98.59

98.70

98.94

96.30

C

Hm

58.92 96.41

R

-0.32

0.37 0.67

An Total

14.29 98.37

-30.42 93.85

-0.19

1.06 -0.31 4.68 98.81

95.80

-0.06

285

Table 2 (continued) SMP-1

SMPV-1

SMNN-1

SMNC-4

SMNC-5

SMNC-6

SMRN-1

SMRN-2

23.77

0

14.36

6.82

13.78

14.92

0

0 0.02

0 0.03

0 0.03 16.59 27.25

0

0

0.03

0.04

20.72 32.93

0 0.03 17.52 32.98

23.03 34.11 10.22

CIPW norm

Q c z

21.14 0 0.02

Or Ab An

23.91 25.31 16.62

2.94

32.60 4.49 13.66

15.04

17.94

19.85

21.35 32.15 14.85

Lc Ne

0

0

0

0

0

0

0

0

0

10.34

0

0 0

0

0

0

Kp

0

0

0

0

0

0

0

0

HI

0

0

0

0

0

0

0

0

0 0

0

Th

0 0

0

0

0

0 0 0

0

0

0 0

Nc Ac Ns

0 0

0.02 16.71 32.71

0

0

0

0

0 0

0 0

0 0

0 0

20.28

Ks

0 0

0

0

0

0

0

0

0 0 0

Di

2.03

4.13

24.53

7.09

10.63

5.54

7.10

4.14

Wo

0

11.83

0

0

0

0.08

4.22

0

0

1.85

0 3.37

0

Hy

4.64

1.64

0

oi

0

0.35

0

0

0

0

Cs

0

0 0

0

0

0

0

0

0 0

Mt Cm

3.49

0.28

6.02

5.10

4.81

1.84 0

0.48

0.01 0.53

0

0.22 1.05

0 0.21

0

Hm

0.01 0.54

8.25 0.01

4.54

0

0.15 1.37

0.67 1.29

11 Tn Pf Ru

0 0

0.75 0 0

0.53 2.66

1.39

2.12

1.84

0 0

0

0

0

0 0

0

0 0

0 0

0

0

0

0.52

0.23

0 1.35

0 0.75

0 1.10

0 0.86

0.77

0 0.85

Hyd

0

0

0

0

0

0

0

0

F1

0

0

0

0

0

0

0

0

Pr Cc

0 0

0

0

0

0

0

Mag Sid Spod

0 0 0

0

0 0 0

0 0

0

0

0 0

Total

98.54

93.92

Ap

0 0

0 98.79

0 0 0 98.90

0 0 0 99.02

0 0 0 0 96.01

0 0 0 99.15

0 0 0 0 96.56

286

Other igneous centers in the central sector of the Sierra Madre Oriental These data correspond to the mafic/alkalic centers in the central sector of the Sierra Madre Oriental mentioned in the text. These form an E-W trending belt of intrusions through the Concepcion del Oro area and extending from Cerro Pedregoso, Coahuila, to Cerro Prieto, Durango. This trend, suggested by geologist Nicholas Hawkes, was recognized through ancillary sampling and lithological mapping in the framework of the present work. Table 3: Major oxides, mesonormative and CIPW norm composition of igneous phases in the Cerro Pedregoso and El Saltillito intrusions.

Si02

SMV-l 59.62

TiOj

0.778

0.745

1.169

0.867

0.82

0.437

0.49

0.614

AI2O3

17.55

17.943 5.785

16.517

18.043 6.793

17.656 5.863

16.519

16.297

0.212

3.862 0.055

16.275 5.645

SMV-5 54.02

SMV-7a 52.969

SMV-8 58.759

SMZ-1 63.514

0.105

0.127 1.496

8.152 0.15 2.784

1.719

0.085 1.812

5.768

5.493

6.129

6.748

6.185

1.565 4.158

NazO

4.164

4.555

4.376

3.584

4.724

K2O

3.696

4.76

4.235

6.079

0.321 0.52

0.265

0.478

0.41

1.61

100.212

100.067

99.62

4.41

-4.47

-8.79

0 5.34

0 5.09

0 7.17

0

total MnO MgO CaO

P2O5

LOI Total

6.072 0.149 1.574

SMV-2 58.488

SMZ-lOa 62.378

4.375

SMZ-14 60.264

1.636

0.131 2.287

4.794

3.494 4.541

4.254

2.909

4.198

3.769

4.306

0.342

0.334

0.251

0.311

0.38

2.00 99.356

1.01

0.42

100.157

99.773

2.27 99.666

0.7 100.061

1.22

6.23

13.36

1.95

0

0

5.16

3.40

0 3.85

0 4.97

5.205

Mesonorm

Q c Mt Cc

-15.08 0 5.98 0

0

0

37.06

30.36

0 40.01

0

35.27

0 38.58

0

Ab

40.61

38.46

36.03

Bi Hm

-9.50 0

-15.67 0

-16.91 0

-24.79 0

-12.51 0

-9.44 0

2.19 0

-12.31 0

Ap

0.76

0.63

1.13

0.81

0.79

0.59

0.73

0.90

Or

27.95

38.25

36.06

51.86

20.80

33.40

33.05

42.58

48.02

-0.14

1.11 -0.20

0.82 0.01

0.78 -0.12

7.08 0.47

R

0.71 -0.05

23.31 0.42 -0.10

32.01

11

24.65 0.74

25.35 30.08

30.95

Hb

-0.26

An Total

3.34 99.45

-1.49 97.72

-0.86

99.47

97.12

8.19 98.94

3.26 99.22

10.54 97.23

9.99

0.58 -0.17 1.81 99.16

287

Table 3 (continued) SMV-1

SMV-2

SMV-5

SMV-7a

SMV-8

SMZ-1

SMZ-lOa

SMZ-14

10.52 0

12.79 0

7.64

CIPW norm

Q c z

9.08

2.76

0

0

7.20

0

0

0

0

0

0.03 21.89

0.03 28.19

0.04 25.06

0.02 35.99

0.04 17.23

0.03

0.02

0.03

24.85

22.32

35.23 18.35

38.54 14.50

36.62 12.98

21.45 15.30

39.97 18.43

40.56 11.25

38.42 13.08

25.50 35.99

0

0

0

0

0

0

0

12.67 0

Ne

0

0

0.22

4.81

0

0

0

0

Kp HI

0

0 0

0 0

0 0

0

0

0

0 0

0

0

0

0

Th

0

0

0

0

0

0

0

0

Nc

0

0

0

0

0

0

0

0

Ac

0

0

0

0

0

0

0

0

Ns

0

0

0

0

0

0

0

0

Ks

0 6.88

0

0

0

0

0

0

8.08 0.55

11.75 0

9.34 2.38

8.23 0

6.81 0

2.45 0

0 9.04

0 0

0 1.07

0 0

0.71 0

0.78 0

2.99 0

Or Ab An Lc

Di Wo Hy

0 0.75

oi

0

Cs

0

0 1.61 0

0

0

0

0

0

0

0

0

Mt Cm

5.16

4.86

6.41

5.93

4.59

3.32

3.85

4.96

0

0

0

0

0

0.12 1.48

0.16

0.53

0.03

0.39

0 0.05

0

Hm 11

0 0

2.22

1.65

1.56

0.83

Tn

0

1.41 0

0 0.93

0

0

0

0

0

0

Pf Ru

0

0

0

0 0.64

0

0 0

0 0

0 0

0

0 0.77

0 0

1.15

0.83

0.800

Hyd

0

0

0

0

0

F1 Pr

0 0

0 0

0 0

0 0

Cc

0

Mag Sid

0

0 0

0 0

0

0

Ap

Spod

0

0

Total

99.740

99.710

1.17

0.61

0 0.76

0.92

0

0

0

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 98.04

0

0

0

0

0

97.72

99.15

99.61

97.62

99.54

288

Table 4: Major oxides, mesonormative and CIPW norm composition of igneous phases in the Rocamontes, San Rafael (Rancho El Pico) and Cerro Prieto intrusions. SMT-3a Si02 TiOz AI2O3 Fe203 total MnO MgO CaO NaaO K2O P2O5

LOI Total

SMW-la

SMW-lb

LG-14'

SMJ-1

SMEJ-11

67.706 0.265 16.609 2.399 0.053 0.436 1.705 5.065 5.659 0.079 0.37 100.346

SMT-7

62.602 0.171 19.322 1.936 0.093 0.335 1.618 4.505 8.535 0.034 0.740 99.891

56.188 0.656 18.250 5.763 0.152 1.440 6.154 4.498 4.630 0.328 1.530 99.589

62.146 0.370 18.722 1.766 0.038 0.471 4.171 6.840 3.688 0.125 1.510 99.847

58.180 0.530 21.310 4.383 0.070 0.130 4.730 5.290 5.400 0 0 100.110

49.915 0.987 17.118 9.799 0.197 3.363 9.851 2.952 4.721 0.654 0.650 100.207

54.480 0.741 18.810 6.630 0.214 2.060 8.040 4.520 3.380 0.430 0.780 100.085

SMJ-12

60.750 0.388 19.320 4.240 0.022 0.400 2.330 5.400 5.920 0.110 1.140 100.020

11.76 0 2.11 0 42.90 -2.10 0 0.19 34.77 6.32 0.25 -0.05 3.74 99.89

-0.02 0 1.70 0 38.16 0.76 0 0.08 49.94 1.58 0.16 -0.07 6.78 99.08

-8.080 0 5.070 0 38.100 -18.900 0 0.770 39.490 37.370 0.620 -0.010 3.430 97.860

-7.160 0 1.550 0 57.930 -18.650 0 0.290 34.180 30.660 0.350 0.150 -1.020 98.290

-6.710 0 0 0 44.810 -8.580 2.560 0 36.880 16.190 0.500 1.090 13.380 100.120

-20.880 0 8.620 0 25.000 -36.850 0 1.540 51.700 74.760 0.940 -0.050 -5.560 99.220

-11.210 0 5.830 0 38.280 -23.720 0 1.010 35.220 48.010 0.700 -0.040 4.970 99.070

1.970 0.040 3.730 0 45.740 2.500 0 0.260 33.370 0 0.370 -0.110 10.840 98.710

Mesonorm

Q c Mt Cc Ab Bi Hm Ap Or Hb

11 R An Total

' Sample LG-14 corresponds to a major element analysis of a Rancho El Pico syenite published by Pantoja Alor and Rincon-Orta (1967). It has been included in this compilation because of its relevance for the description of the mafic/alkalic igneous systems in the central sector of the Sierra Madre Oriental, and additionally because it was dated by the same authors.

289

Table 4 (continued) SMT-3a

SMT-7

SMW-la

SMW-lb

LG-14

SMJ-1

SMEJ-11

SMJ-12

CIPW norm

Q c z

12.84

0

0.380

1.070

0

0

0

0

0

0

0

0

0

0

0

0.05

0.040

0.030

0

0.010

0.030

0.040

Or

33.53

0.02 50.52

27.960

20.010

35.030

42.85

37.71

21.830 57.870

31.920

Ab

27.420 38.060

36.860

45.690

5.87

7.43

15.990

9.530

39.280 18.460

15.200

An

19.570

21.130

11.140

Lc

0

0

0

0

0

0

0

Ne

0

0.22

0

0

2.97

5.30

0 0.75

Kp HI

0 0

0

0

0

0

0

0

0

0 0

0 0

0 0

Th Nc Ac

0

0 0

0

0

0

0

0 0

0

0 0

0

0 0 0 0

0 0 0

0 0 0

0 0

0 0

0

0

0

0

0

0

Di Wo

0.44

Hy 01 Cs

1.170

0

0

0 0

0

0

0 0 0

1.83

1.10

7.90

2.55

0.70

18.53

0

0

1.28

3.22

1.72

0.97

11.42 0.94

0.26

0

0

0

0

0

0

0.82

0

0.36

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1.70 0 0

5.07

1.07

1.33

Hm

2.11 0 0

0 0

0 0.34

0 1.64

8.62 0 0

5.83 0 0

3.73 0 0

11

0.50

0.32

1.25

0.70

1.01

1.87

1.40

0.74

0

0

0

0

0

0

0

0 0

0

0 0

0 0

0

0

0 0

0

0

0 0

0

0

0.19

0.09

0.79

0.30

0

1.57

1.03

0.27

Ns Ks

Mt Cm

Tn Pf Ru Ap Hyd

0

0

0

0

0

0

0

0

0

F1

0

0

0

0

0 0

0 0

0 0

Pr

0

0 0

0

0 0

Cc

0

0

0

0

0

0

0

0

Mag

0

0

0

0

0

0

0

0

Sid Spod

0 0

0

0 0

0 0

0

Total

100.04

0 0 98.17

98.52

99.02

0 0 99.41

0 0 99.08

0 99.48

0 99.58

290

Appendix II

Electron MICROPROBE ANALYSES OF ROCK-FORMING MINERALS IN THE DIFFERENT INTRUSIVES OF THE CONCEPCION DEL ORO AREA, IN THE CENTRAL SECTOR OF THE SIERRA MADRE ORIENTAL, MEXICO.

Feldspar Analyses

Plagioclase analyses Sample

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mg

Na

abl plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi 'sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plagi "sup plag2 piag2 plag2 ab ab ab ab ab ab ab ab ab plag3 plag3 plag3 pL?a3 plag3 plag3 plag3 plag3 plag3 plag3 plaga plagS plag3

rim rim in in continued 1 in in in in in in in in in In in in in in in in in in in margin, ne near cpx2, near cpx2, replaced, c out plag3 out plag3 out plag3 out plag3 out plag3 out plaq3 near rim to rim to plag rim to repit near rim to in in in in in in in in in in in near cor

7.842 8.53 6.991 6.542 5.797 5.216 4.337 4.741 4.874 6.343 4.505 4.722 5.01 5.414 5.235 4.753 5.168 5.333 5.232 4.785 4.933 5.097 5.148 5.229 4.816 7.232 5.667 5.496 0.001 8.135 7.892 8.159 8.195 7.964 8.081 8.06 8.49 6.89 6.937 5.271 4.816 5.464 5.226 5.309 5.468 5.071 4.99 5.369 5.174 5.176

Al

0 0.005 0 0.003 0 0 0 0.004 0 0 0 0.002 0 0 0 0 0.011 0.007 0 0 0.003 0 0 0 0 0.001 0.002 0.004 0 0 0 0 0 0 0 0.002 0 0.003 0.004 0.006 0.002 0.005 0 0 0.002 0.007 0.005 0.005 0.004 0.002

SI

11.371 10.755 11.902 12.65 13.242 13.495 14.536 13.932 13.659 12.413 14.375 14.01 13.879 13.416 13.542 14.13 13.587 13.329 13.631 13.881 13.633 13.678 13.53 13.677 14.051 11.859 13.269 13.318 0.078 10.99 11.023 11.05 11.029 11.211 11.097 11.096 10.746 11.99 12.256 13.849 14.01 13.266 13.554 13.6 13.414 13.686 13.635 13.456 13.482 13.491

CI

30.53 32.493r 29.935 28.764r 27.812 26.976 25.775 26.358 26.524 28.454 26.049 26.463 26.575 27.372 27.171 26.466 26.982 27.492 27.131 26.625 26.873 26.967 27.016 27.231 26.525 29.973 27.627 27.731 46.296 31.101 30.885 31.134 31.045 31.183 31.358 31.203 31.477 29.415 29.685 27.08 26.414 27.535 27.127 27.113 27.606 27.129 26.862 27.212 27.195 27.106

K

0.002 0 0 0.007 0.012 0.006 0.002 0.008 0.003 0.032 0 0.008 0.01 0 0.003 0 0 0 0.002 0.004 0 0.011 0.001 0.003 0.001 0.062 0.004 0.009 0 0 0.005 0 0 0.003 0.026 0.007 0.006 0.015 0 0.006 0.008 0.009 0.003 0 0.006 0 0.005 0 0.009 0

Ti

Ca

0.091 0.171 0.174 0.168 0.231 0.221 0.191 0.262 0.278 0.563 0.242 0.274 0.242 0.325 0.386 0.314 0.362 0.41 0.398 0.342 0.395 0.414 0.453 0.443 0.355 0.188 0.342 0.393 0.021 0.102 0.267 0.232 0.231 0.3 0.21 0.248 0.226 0.413 0.446 0.265 0.248 0.373 0.353 0.34 0.415 0.376 0.372 0.444 0.44 0.447

1.62 0.31 2.931 3.783 4.903 5.549 7.03 6.162 5.878 3.638 6.658 6.336 6.036 5.249 5.486 6.314 5.748 5.185 5.543 6.108 5.778 5.772 5.279 5.495 6.184 2.361 4.901 4.873 0.012 1.044 1.202 1.042 0.989 1.298 1.067 1.085 0.578 2.822 2.968 5.734 6.228 5.036 5.577 5.552 5.163 5.664 5.609 5.249 5.312 5.441

F

0 0.054 0.022 0 0 0.007 0.011 0 0.027 0.02 0.009 0.007 0.038 0.016 0.007 0 0.013 0.002 0 0 0 0.009 0 0 0 0 0 0 0.011 0 0 0 0.007 0 0.034 0 0 0 0.009 0 0.02 0 0.02 0 0 0 0.034 0 0.034 0.031

Ba

0 0 0 0.025 0.025 0 0 0 0 0.076 0 0.034 0 0 0.068 0 0.068 0.068 0 0 0 0.034 0 0 0 0 0 0 0.054 0.058 0 0.008 0 0 0 0 0 0.008 0.008 0.034 0.111 0.102 0 0 0.06 0.085 0.017 0 0 0

Mn

0

P

Fe

0.001 0 0.003 0 0.024 0 0 0 0 0 0.003 0 0.02 0.024 0 0 0.009 0 0.014 0 0 0.02 0.024 0.004 0.013 0.017 0 0 0.023 0.009 0.014 0 0 0 0 0 0 0 0 0 0.024 0.01 0.026 0.021 0 0.014 0.001 0 0.009 0.01

0.132 0.017 0.138 0.148 0.135 0.178 0.189 0.141 0.152 0.143 0.135 0.204 0.153 0.159 0.139 0.086 0.121 0.132 0.169 0.083 0.132 0.123 0.143 0.111 0.13 0.105 0.21 0.143 0.001 0.014 0.044 0.022 0.045 0.041 0.012 0.031 0.04 0.138 0.178 0.148 0.188 0.169 0.122 0.166 0.152 0.202 0.281 0.169 0.173 0.16

0 0 0.003 0.009 0.012 0 0 0 0 0.007 0 0 0 0 0.01 0.009 0.006 0 0 0.015 0.004 0.017 0 0.004 0.004 0.016 0 0 0 0.013 0.011 0 0.005 0.011 0 0.008 0 0.016 0.002 0.009 0.002 0 0.007 0.002 0.008 0.008 0.01 0 0 0.013

Sum

48.33 49.759 48.392 47.89 47.536 46.869 46.714 46.629 46.531 47.26 46.786 46.89 46.9 47.229 47.122 46.997 47.027 47.205 47.205 46.897 46.894 47.107 46.857 47.334 46.983 48.239 47.339 47.422 52.819 48.478 48.305 48.607 48.499 48.878 48.9 48.729 48.664 47.843 48.473 47.393 46.8 47.17 47.145 47.179 47.462 47.226 46.897 47.079 47.064 47.037

99.919 102.094 100.491 99.989 99.729 98.517 98.785 98.237 97.926 98.949 98.762 98.95 98.863 99.204 99.169 99.069 99.102 99.163 99.325 98.74 98.645 99.249 98.451 99.531 99.062 100.053 99.361 99.389 99.316 99.944 99.648 100.254 100.045 100.889 100.785 100.469 100.227 99.553 100.966 99.795 98.871 99.139 99.16 99.282 99.756 99.468 98.718 98.983 98.896 98.914

lO

Feldspar Analyses

Plagioclase analyses Sample

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Na

plag3 in near cor in near cor plag3 plag3 core plag3 core plag3 core plag3 core plag3 in near cor plag3 in plagS in plag3 in plag3 in plag3 in plag3 in plag3 in in plag3 in near rim plag3 in near rim plagS In near rim plag3 rim to repli rim ab replacing p ab replacing p ab plag4 rim to Ab plag4 in Ab smith r( plag plag Ab smith rf plag Ab smith r( plagi rim plag1 near rim plagi in plagi in plagi in plagi in plagi in plagi in plagi in plagi near core plagi core plagi core plagi in plagi in plagi in plagi in plagi in plagi in plagi near rim plagi near rim plagi rim | outsideplagl rim plagi core] plagi near core

Mg

5.166 5.365 4.787 4.91 4.889 5.207 4.962 5.223 5.35 5.285 5.356 6.221 5.514 6.631 6.632 6.743 6.827 7.945 8.429 8.67 8.103 5.274 5.406 8.312 7.265 7.563 5.459 5.055 5.435 5.359 5.14 4.897 5.289 4.654 4.814 4.772 4.756 4,774 4.476 4.613 4.909 4.609 5.026 5.288 5.242 5.532 6.18 5.987 4.725 4.814

Al

0 0.005 0 0.009 0.002 0 0.003 0 0.009 0 0.002 0.005 0 0.004 0 0 0 0 0.035 0 0.013 0 0.005 0.004 0.007 0.004 0 0.002 0 0.006 0 0 0.002 0 0 0 0.005 0.005 0 0.005 0 0.003 0.002 0 0.001 0.005 0.002 0.002 0.002 0.006

Si

13.515 13.65 13.725 13.797 13.846 13.527 13.752 13.42 13.374 13.222 13.689 12.218 13.415 12.048 11.936 12.034 12.072 11.265 11.019 10.772 11.115 13.723 13.669 9.83 10.746 10.422 14.189 14.029 13.392 13.573 13.827 14.082 14.332 14.09 14.071 14.095 14.124 14.255 14.769 14.361 13.841 14.378 14.54 13.706 13.731 13.387 13.736 12.818 14.023 14.075

CI

27.368 27.52j 26.545 26.758 26.426 27.168 26.765 27.149 27.446 27.36 27.384 29.054 27.485 29.309 29.279 29.458 29.368 30.861 31.682 31.979 31.279 27.016 27.235 30.005 27.798 28.391 27.983 26.911 27.719 27.695 27.35 26.952 27.861 26.547 26.769 26.801 26.837 26.841 26.358 26.631 26.762 26.276 27.407 27.703 27.622 28.066 29.514 28.372 26.801 26.963

K

0.002 0.014 0 0.008 0 0 0.005 0 0.001 0.008 0 0.009 0.001 0.011 0.002 0.022 0.004 0 0.007 0 0.002 0 0 0 0.008 0.008 0 0 0 0.001 0.002 0 0.01 0.002 0.005 0 0 0.012 0 0 0.003 0.004 0.006 0.002 0.003 0.003 0 0 0.002 0.003

Tl

Ca

0.44 6.473 0.385 0.374 0.363 0.469 0.372 0.444 0.422 0.435 0.387 0.654 0.219 0.534 0.517 0.455 0.415 0.131 0.128 0.119 0.151 0.283 0.276 0.103 0.254 0.237 0.268 0.276 0.317 0.312 0.299 0.273 0.275 0.275 0.267 0.25 0.237 0.261 0.211 0.226 0.232 0.225 0.229 0.296 0.28 0.327 0.315 0.277 0.271 0.281

5.342 5.177 6.061 5.889^ 6.012 5.406 5.87 5.378 5.183 5.118 5.314 3.507 5.194 3.008 3.048 2.96 2.924 1.488 0.618 0.42 0.896 5.437 5.374 0.207 1.642 1.27 5.328 5.826 5.013 5.236 5.566 6.134 6.128 6.402 6.195 6.302 6.197 6.252 6.964 6.565 5.82 6.586 6.383 5.396 5.371 4.882 4.896 4.125 6.245 6.145

F

0.034 0.013 0.029 0 0.013 0 0 0 0.031 0.002 0 0.016 0 0.011 0 0.007 0.004 0 0.009 0.002 0 0.038 0.02 0 0.018 0 0.015 0.009 0.004 0 0 0.007 0 0.002 0.015 0.015 0 0 0.029 0.013 0 0.002 0.053 0.009 0.011 0.011 0 0 0.038 0.002

Ba

0 0.094 0.052 0.026 0 0.06 0.051 0 0 0 0.06 0 0.06 0 0 0 0.025 0.124 0.033 0 0 0.026 0.043 0.067 0 0 0.139 0.209 0 0.277 0 0.348 0.347 0 0.968 0.07 0 0 0.21 0 0.209 0.488 0 0 0.208 0 0.686 0 0 0

Mn

Fe

0.003 0.006 0 0 0.024 0.013 0.014 0 0.038 0.004 0.011 0 0.001 0.01 0 0 0 0.016 0.043 0.014 0.017 0 0 0.021 0.015 0.007 0.001 0.003 0.007 0.004 0.022 0 0 0.022 0 0.018 0.015 0 0 0.077 0.01 0 0 0 0.001 0 0.013 0.01 0 0

P

0.207 0.186 0.17 0.139 0.178 0.177 0.197 0.196 0.192 0.203 0.216 0.219 0.124 0.204 0.173 0.136 0.142 0 0.154 0.153 0.073 0.232 0.202 0.06 0.047 0.028 0.156 0.145 0.137 0.141 0.149 0.16 0.151 0.172 0.149 0.142 0.172 0.156 0.16 0.286 0.126 0.202 0.159 0.162 0.11 0.154 0.151 0.122 0.167 0.164

Sum

0

0.002 0.007 0.016 0.006 0.004 0.019 0.001 0.009 0.008 0.015 0 0.006 0 0 0.011 0.002 0.008 0.015 0 0.005 0.006 0.008 0.008 0 0.008 0 0.011 0.007 0.012 0.009 0.016 0 0.007 0.041 0 0.003 0 0.002 0.013 0 0.018 0.003 0.007 0 0.001 0.013 0.007 0 0.011 0.003

47.309 47.561 46.685 46.937 46.674 47.107 46.915 46.993 47.288 46.985 47.483 47.751 47.296 47.798 47.671 47.93 47.87 48.541 49.175 49.282 48.774 47.143 47.34 45.925 44.509 44.816 48.598 47.252 47.512 47.587 47.602 47.347 48.74 47.121 46.863 47.333 47.376 47.521 47.543 47.505 46.856 46.867 48.592 47.862 47.665 47.898 49.783 47.554 47.291 47.482

99.388 100.071 98.455 98.853 98.431 99.153 98.907 98.812 99.342 98.637 99.902 99.66 99.309 99.568 99.269 99.747 99.659 100.386 101.332 101.416 100.429 99.18 99.578 94.534 92.317 92.746 102.147 99.724 99.548 100.2 99.973 100.2 103.142 99.328 100.116 99.801 99.719 100.079 100.733 100.282 98.786 99.643 102.404 100.424 100.246 100.278 105.283 99.267 99.576 99.938

K) vO to

Feldspar Analyses

Plagioclase analyses Sample

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mg

Na

plagi in plagi In plagi In plagi near rim plagi rim | ab marg to plagi ab marg to plagi plag2 rim to Ksp plag2 rim to Ksp plag2 in plag2 In plag2 In plag2 In plag2 In plag2 In plag2 In plag2 in plag2 In plag2 In plag2 In plag2 In plag2 In plag2 In plag2 In plag2 In plag2 In p\agZ in plag2 In plag2 near core plag2 near core plag2 core plag2 core plag2 core plag2 near core plag2 In plag2 In plag2 in plag2 In plag2 in plag2 In plag2 in plag2 in plag2 In plag2 In plag2 in plag2 near rim plag2 near rim plag2 near rim plag2 rim | ab marg plag rim

4.527 4.816 5.011 5.437 7.077 5.322 5.23 6.21 5.933 5.66 5.744 5.812 5.52 5.697 5.489 5.703 5.144 5.269 5.211 5.161 5.167 4.47 4.839 4.773 5.058 4.899 4.633 4.77 4.751 4.865 4.683 4.804 4.986 5.07 5.435 5.43 5.643 5.455 5.309 5.257 5.483 5.11 5.305 5.54 5.554 5.297 5.299 5.089 5.251 5.503

A!

0.004 0.005 ^ 0.008 0.006 0 0.001 0.004 0 0 0 0 0 0 0.001 0 0.003 0.004 0 0 0.003 0 0.009 0 0.001 0 0.006 0 0 0.009 0.006 0 0 0.003 0.002 0 0.001 0 0 0 0.009 0 0 0.002 0.003 0.001 0.005 0.006 0 0.002 0

Si

14.36 14.112 14.085 13.822 14.026 13.456 13.798 12.764 13.119 13.385 13.44 13.087 13.689 13.298 13.356 13.9 13.822 13.176 13.711 13.821 13.793 14.614 14.167 14.107 13.919 13.88 14.084 14.14 13.978 14.157 14.327 14.01 14.112 13.866 13.553 13.48 13.41 13.38 13.452 13.446 13.434 13.702 13.484 13.41 13.413 13.718 13.696 13.899 13.523 13.294

CI

26.618 26.802 27.139 27.651 31.055 27.241 27.235 28.856 28.307 28.033 27.981 27.912 28.142 28.118 27.647 28.428 27.263 27.279 27.343 27.657 27.442 26.224 26.915 26.769 27.247 26.86 26.882 26.893 26.915 27.041 26.455 26.709 27.196 27.143 27.949 27.862 27.987 27.717 27.624 27.693 27.826 27.159 27.248 27.429 27.87 27.722 27.579 27.405 27.605 27.705

K

0 0.006 6 0.006 0.007 0.003 0.002 0.009 0 0.005 0 0 0 0 0 0 0.008 0.014 0.014 0 0.004 0 0.004 0.001 0 0.006 0.008 0 0.004 0 0.003 0.008 0 0 0 0 0 0.004 0.013 0 0 0.006 0.008 0 0.006 0 0.009 0.011 0.012

Ti

Ca

0.24 0.232 0.258 0.253, 0.271 0.241 0.234 0.197 0.216 0.141 0.173 0.159 0.224 0,252 0.264 0.266 0.258 0.328 0.311 0.322 0.309 0.227 0.249 0.265 0.337 0.276 0.279 0.274 0.249 0.27 0.257 0.269 0.275 0.3 0.331 0.345 0.32 0.31 0.353 0.353 0.322 0.26 0.291 0.287 0.295 0.266 0.297 0.244 0.267 0.278

6.661 6.222 5.989 5.516 4.496 5.67 5.705 3.998 4.582 5.058 4.999 4.839 5.099 4.839 5.187 5.403 5.612 5.188 5.478 5.515 5.504 6.713 6.034 6.228 5.65 5.857 6.008 6.192 5.97 5.979 6.62 6.214 5.842 5,825 5.213 5,165 4,961 5,215 5.159 5.032 4.99 5.551 5.255 5.165 5.26 5.324 5.417 5.63 5.211 4.953

Ba

F

0 0.029 0.007 0.035 0.013 0.015 0.009 0 0.029 0 0.044 0 0 0 0.053 0.02 0 0 0.024 0 0.018 0 0.026 0.004 0 0.002 0.007 0 0 0.015 0.018 0 0.02 0,024 0.002 0,029 0,009 0,009 0.022 0 0.011 0.009 0.011 0 0 0.002 0.027 0.046 0.015 0.004

0 0.556 0.278'' 0.484 0.206 0 0 0.274 0.207 0.138 0.823 0 0 0.619 0 0.208 0 0 0 0.208 0.139 0 0.693 0.349 0.278 0.279 0 0 0.694 0.968 0.489 0.556 0 0.348 0.689 0 1.095 0 0.553 0.552 0.346 0 0 0 0.552 0.895 0.139 0 0 0.62

Mn

P

Fe

0.048 0 0.006 0.017 0 0.008 0 0.003 0 0 0 0.008 0.001 0.007 0.011 0 0.011 0.031 0 0.001 0 0 0 0.015 0 0 0.022 0 0 0 0.031 0.008 0 0.014 0.014 0.018 0 0.022 0 0 0.024 0.028 0.039 0 0 0.007 0.001 0.014 0 0.006

0.169 0.135 0.163 0.158 0.147 0.132 0.186 0.159 0.145 0.124 0.16 0.141 0.145 0.108 0.185 0.172 0.181 0.139 0.151 0.154 0.21 0.138 0.209 0.123 0.16 0.119 0.18 0.13 0.173 0.136 0.115 0.144 0.15 0.149 0.155 0.187 0.135 0.195 0.185 0.164 0.118 0.151 0.155 0.177 0.167 0.178 0.182 0.168 0.158 0.149

0

0.015 0.008 0.001 0 0 0 0 0.005 0.008 0.007 0 0.006 0 0 0 0.006 0.003 0 0 0.01 0.011 0.01 0.011 0.001 0.002 0.012 0 0.003 0.009 0.001 0.001 0 0 0.002 0.006 0.003 0.001 0 0.007 0 0.01 0.001 0.016 0.003 0.004 0.015 0 0.017 0.009 0.009

Sum

47.469 47.132, 47.579 47.819 52.136 47.221 47.51 47.965 47.841 47.849 47.593 47.481 48.285 47.604 47.506 48.934 47.503 46.819 47.47 47.838 47.622 47.217 47.212 47.146 47.441 46.988 47.285 47.447 46.962 47.183 47.06 46.909 47.719 47.332 47.707 47.841 47.41 47.593 47.261 47.241 47.535 47.239 47.127 47.284 47.6 47.51 47.688 47.758 47.508 47.135

100.111 100.055 100.524 101.198 109.433 99.314 99.914 100.433 100.396 100.395 100.962 99.445 101.105 100.543 99.698 103.043 99.801 98.237 99.713 100.704 100.215 99.626 100.355 99.785 100.093 99.178 99.386 99.857 99.71 100.625 100.056 99.626 100.311 100.075 101.054 100.361 100.971 99.896 99.929 99.76 100.099 99.21 98.939 99.306 100.716 100.945 100.331 100.279 99.56 99.668

N>

Feldspar Analyses

Plagioclase analyses Sample

SMCA-1 SMCA-1 SMCA-1

Mg

Na

ab marg plag rim ab marg plag rim ab marg plag rim

A!

6.591 7.175 7.193

0.001

8.742 8.764 7.34 8.252 8.089 7,545 5.609 6.18 5.239 5.659 8.458 8.329 7.483 7.324 7.255 5.115 5.239 5.517 5.647 4.899 4.714 5.55 4.924 4.902 5 6.694 7.649 7.53 5.384 5.179 5.113 4.924 4.811 5.372 5.291 5.4 5.309 5.312 5.309 5.372 5.476 4.201 4.085 3.562 3.859 5.206

Si

CI

K

Ti

Ca

F

Ba

Mn

Fe

o

P

Sum

0.006

12.091 11.461 12.052

29.579 30.546 30.356

0 0.002 0.015

0.421 0.342 0.172

3.109 2.562 2.57

0.04 0.011 0.033

0 0 0

0.01 0 0.004

0.202 0.095 0.076

0 0,008 0

48.165 48.632 48.917

100.209 100.835 101.394

0.023 0.002 0.264 0.012 0.003 0.002 0.139 0.205 0 0.002 0.002 0.003 0.153 0.011 0.008 0 0.005 0 0 0.007 0.003 0.003 0.002 0.695 0.006 0.025 0.006 0 0 0 0.005 0 0 0.008 0.005 0.009 0.004 0.003 0 0.005 0 0.007 0.007 0 0.005 0.004

10.695 10.614 11.191 11.287 11.518 11.889 12.891 12.572 14.016 13.493 11.143 11.398 11.857 12.109 11.967 14.079 14.059 13.927 13.639 14.111 14.305 13.703 14.32 11.631 14.079 12.264 11.683 11.782 13.91 14.153 13.916 14.104 14.108 13.506 13.774 13.62 13.633 13.565 13.664 13.545 13.507 14.764 14.895 15.418 15.081 13.833

32.298 31.808 30.132 32.155 31.055 30.428 27.192 28.351 27.089 27.504 32.166 31.55 30.787 30.132 30.043 26.96 26.85 27.576 27.489 26.704 26.341 27.294 26.446 25.825 26.562 30.193 30.901 30.873 27.114 27.166 27.015 26.708 26.405 27.549 27.355 27.637 27.483 27.586 27.564 27.554 27.516 25.812 25.605 24.884 25.503 27.065

0 0 0 0.04 0.012 0.042 0.008 0.014 0.007 0.004 0.001 0.272 0.007 0 0.002 0 0.002 0 0.005 0.009 0 0.042 0.011 0.021 0.011 0.027 0.08 0.002 0.011 0 0 0 0.001 0.003 0.001 0 0 0.007 0.005 0 0.002 0 0 0 0.014 0.013

0.135 0.211 0.175 0.191 0.081 0.106 0.11 0.582 0.114 0.174 0.125 0.102 0.169 0.185 0,271 0.151 0,14 0.142 0.139 0.174 0.147 0.233 0.136 0.596 0.101 0.344 0.189 0.318 0.159 0.194 0.305 0.309 0.324 0.476 0.394 0.478 0.507 0.474 0.462 0.486 0.477 0.273 0.25 0.198 0.224 0.404

0.488 0.33 2.115 0.83 1.483 2.167 5.054 4.011 5.909 5.093 0,614 1,055 2,589 2.586 2.619 6.03 5.934 5.651 5.273 6.151 6.579 5.183 6.309 4.644 6.217 2.626 1.817 1.945 5.77 5.931 5.816 6.103 6.407 5.185 5.487 5.181 5.247 5.296 5.365 5.224 5.267 7.173 7.453 8.304 7.734 5.668

0.014 0.03 0.018 0 0.018 0 0.032 0.018 0 0.053 0,032 0 0,018 0,021 0 0 0,014 0.034 0,025 0 0 0,014 0 0.002 0,03 0 0.028 0.009 0.025 0.014 0 0.009 0 0.023 0.014 0.005 0.034 0,041 0 0,028 0 0,028 0 0,016 0 0

0,394 0 0 0 0.265 0 0.407 0.067 0.342 0.068 0.33 0.461 0 0.467 0 0 0.75 0.137 0 0.207 0.138 0 0.207 0 0.275 0 0 0 0 0 0.616 0.344 1.161 0 0.274 0 0 0.274 0.274 0 0.137 0 0 0.419 0 0.206

0 0.004 0.03 0.035 0 0.003 0.006 0.014 0.004 0.023 0.029 0.033 0 0.003 0 0 0 0 0.004 0 0.012 0.043 0 0.027 0 0.01 0.036 0.009 0 0 0.01 0 0 0 0.016 0.023 0.019 0.006 0.029 0.013 0.003 0.049 0.02 0 0 0

0.3 0.272 0.5 0.252 0.293 0.228 0.552 0.931 0.431 0.35 0.15 0.203 0.355 0.227 0.312 0.25 0.242 0.265 0.199 0.246 0.283 0.272 0.193 0.459 0.244 0.316 0.029 0.099 0.121 0.181 0.211 0.171 0.169 0.231 0.235 0.184 0.181 0.205 0.206 0.24 0.244 0.179 0.194 0,198 0,201 0,211

0 0 0 0 0.006 0 0.002 0.01 0 0 0.005 0 0 0 0 0 0.011 0 0.001 0.018 0 0 0 0.006 0.006 0.001 0.001 0 0.009 0.016 0 0.002 0 0 0 0 0 0,002 0 0 0.007 0.005 0 0.023 0 0

49.521 49.006 48.059 50 49.044 48.814 46.543 47.756 47.517 47.491 49.716 49.24 49.509 48.612 48.594 47.531 47.098 48.053 47.625 47.183 47,062 47,428 47,096 44,053 47,012 48,864 49,05 49.154 47.536 47,833 47,129 47.102 46.492 47.526 47.501 47.717 47.568 47.532 47.594 47.591 47.493 47.018 46.937 46.581 47.006 47.271

102.61 101.041 99.824 103.054 101.867 101.224 98.545 100.711 100.668 99.914 102,771 102,646 102.927 101.677 101.071 100.116 100.344 101.302 100.046 99.709 99.584 99.765 99.644 92.861 99.543 101.364 101.469 101.721 100.039 100.667 100.136 99.776 99.878 99.879 100.347 100.254 99.985 100.303 100.472 100,058 100.129 99.509 99.446 99.603 99.627 99.881

o.ooTl

1 SMCA-5 ab inci in cpxl SMCA-5 abcr incI in cpxl SMCA-5 plag nearest rim SMCA-5 plag near rim SMCA-5 plag in SMCA-5 plag in SMCA-5 plag rim to cpxl SMCA-5 plag rim to cpx1 SMCA-5 plag in SMCA-5 plag in SMCA-5 ab repi plag in SMCA-5 ab repI plag in SMCA-5 plag1 rim to ac SMCA-5 plag1 rim to ac SMCA-5 plaq1 n rim to ac SMCA-5 plag1 in SMCA-5 plag1 in SMCA-5 plag1 near core SMCA-5 plagi core SMCA-5 plag1 core SMCA-5 plagi near core SMCA-5 plagi in | SMCA-5 plagi near rim SMCA-5 plagi posible rim SMCA-5 plagi loZ margin SMCA-5 plagi loZ rpl/mrg SMCA-5 ab rim to plag2 SMCA-5 plag2 rim to ab o SMCA-5 plag2 n rim to ab SMCA-5 plag2 in SMCA-5 plag2 in SMCA-5 Jplaq2 in SMCA-5 plag2 in SMCA-5 plag2 in SMCA-5 plag2 in SMCA-5 plag2 in SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 core SMCA-5 plag2 near core SMCA-5 plag2 in SMCA-5 plaq2 in

to vO 4^

Feldspar Analyses

Plagioclase analyses Sample

Na

plag2 In plag2 In plag2 in plag2 in plag2 in ab crack in plag2 plag2 near rim plag2 rim

5.345 5.418 5.072 3.595 4.561 7.991 4.952 6.55

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

plag rim to cpxl plag to cpx2, in ab with ilm needle ab with Ilm needle plagtoact, plag in plagtoact, plag nr plagtoact, plag rm ksptoplag, plag rm ksptoplag, plag nr ksptoplag, plag z1 ksptoplag, plag z1 plag loZ Int z1 plag hiZ rim to 22 plag loZ z2 rim plag loZ z2 in plag z2 in plag z2 In plag z2 in plag z2 in plag z2 near core plag z2 core plag z2 core plag 22 near core plag 22 in plag z2 in plag loZ 22 nrim plag loZ 22 rim plag hiZ 21 rim plag hiZ z1 nrim plaq 21 in plag z1 in plag loZ 2l rim plag hiZ zO intrim plag loZ zO outrim plag hiZ plag rim plag ab outsid rim ksp2plag. plag rim ksp2plag, plag nrm ksp2plag, plag in ksp2plag, plag in ksp2plag, plag In

4.11 5.038 6.679 6.91 5.304 5.488 5.706 6.245 5.858 6.544 5.242 5.291 4.297 5.258 5.105 4.969 4.409 4.554 5.138 5.212 5.186 5.252 5.03 4.986 4.81 5.16 5.312 4.345 4.185 4.575 4.9 5.433 5.094 5.888 5.596 7.617 5.033 6.045 5.799 5.441 5.513

SMCA-a SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

A!

Mg

SMCA-5 SMCA-5 SMCA-5" SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5

Si

0.006 13.658 13.618 " 0.007 13.992 0.004 0 14.16^ 0 " '14.373 0 11.402 0 14.043 0.003 12.553 0.11 0.005 0.148 0 0.002 0.004 0.105 0 0 0 0 0.001 0 0.003 0 0 0 0.001 0 0 0,016 0.007 0 0 0 0 0 0 0.001 0.004 0 0 0.001 0 0.01 0.004 0.013 0.003 0 0 0.003

11.579 13.723 11.708 12.124 13.703 13.644 13.088 13.034 13.267 13.389 13.734 13.746 14.714 13.591 14.002 14.109 14.439 14.528 13.788 13.671 13.797 13.604 13.8 14.056 14.351 13.747 13.719 14.624 14.702 14.387 14.079 13.61 13.715 13.135 13.509 11.53 12.603 13.15 12.92 13.479 13.638

CI

K

Ca

TI

F

Ba

Mn

0

P

Fe

Sum

27.162 '27^419 26.947 27.498 26.14 32.121 26.698 29.031

0.004 0.007 0 0 0 0 0.006 0

0.348 0.32 0.374 0.36 0.269 0.119 0.24 0.17

5.479 5.44 5.796 ^5.889 6.74 0.953 6.121 3.69

0.005 0 d b 0.021 0.009 0.014 0.028

0 0.816 0.954 0.139 0 0.133 0 0.338

0 0 0.001 0.006 0.046 0 0.007 0

0.201 0,205 0.186 ^ 0.215 0.254 0.039 0.185 0.18

0 0 0.017 0.003 0.014 0.002 0.018 0

47.279 47.195 46.98 47.614 47.018 49.89 47.213 47.96

99.487 100.445 100.323 99.483 99.436 102.659 99.497 100.503

30.911 27.422 30.931 30.27 27.387 27.48 28.342 28.939 28.494 28.073 27.47 27.488 25.851 27.346 27.164 26.661 26.159 26.333 27.377 27.38 27.353 27.641 27.743 27.275 26.917 27.218 27.486 26.083 25.804 26.42 26.803 27.828 27.241 28.557 27.761 31.051 27.138 28.759 29.392 27.731 27.852

0.233 0 0.135 0 0.003 0 0.003 0.036 0.017 0.006 0 0.004 0.014 0.063 0.006 0.005 0.006 0 0.015 0.004 0.007 0.001 0 0 0.008 0.008 0.012 0.018 0 0.012 0.018 0.004 0.006 0 0.001 0.005 0.016 0.039 0 0.003 0

4.387 0.224 0.205 0.118 0.153 0.143 0.141 0.162 0.196 0.197 0.159 0.184 0.138 0.234 0.173 0.188 0.172 0.172 0.241 0.237 0.248 0.251 0.202 0.191 0.167 0.198 0.202 0,148 0.123 0,146 0.156 0.2 0,172 0,232 0,164 0.289 0.342 0.193 0.179 0.229 0.209

1.772 5.581 2.077 2.704 5.614 5.383 4.709 4.188 4.51 4.973 5.484 5,58 7,288 5.531 6.025 6.236 6.966 6.811 5.563 5.545 5.668 5.355 5.52 5.968 6.535 5.701 5.59 7.15 7.361 6,658 6.244 5.303 5.663 4.488 5.242 1.629 4.498 4.335 3.726 5.116 5.191

0 0 0.088 0.041 0.023 0.025 0.011 0.014 0.018 0 0 0.034 0.011 0,007 0 0.007 0.063 0.007 0.005 0.009 0.018 0 0.018 0 0.009 0.014 0.025 0.02 0 0 0,002 0.018 0.011 0.029 0.002 0.013 0 0.005 0.025 0 0

0 0,557 0 0 0 0,277 0 0 0 0 0 0 0.704 0.279 0.14 0.07 0 0.561 0.765 0 0.35 0 0.14 0,07 0.491 0 0.626 0.283 0 0 0.49 0 0 0,622 0.694 0.744 0 0.277 0 0 0.557

0,027 0 0.023 0 0.003 0.03 0.004 0.001 0.003 0 0.006 0 0 0.003 0 0 0.027 0.037 0 0.01 0.025 0 0 0 0 0.011 0.004 0.006 0.011 0.007 0.01 0.011 0 0 0.01 0.021 0.017 0 0 0.014 0.037

0,151 0.234 0.259 0.164 0.153 0.764 0.224 0.108 0.148 0.157 0.139 0,107 0,149 0,227 0,187 0,391 0,265 0,297 0,16 0,313 0,18 0,24 0.186 0.192 0.212 0.16 0.184 0,112 0.135 0.207 0.206 0.134 0.134 0,238 0,121 0.055 0.201 0.097 0.093 0.156 0,089

0.006 0 0 0.003 0 0.013 0 0 0 0.001 0,009 0.015 0 0,009 0.009 0.017 0.004 0 0,01 0 0 0 0.014 0 0.007 0.012 0 0,006 0.017 0.009 0.007 0 0.016 0 0 0 0.001 0.011 0 0.003 0

48.632 47.313 49.058 48.859 47.571 47,682 47,97 48,476 48.197 47.896 47.614 47.724 46.726 47.284 47.627 47.292 47.129 47,129 47,251 47,529 47,488 47,684 47.903 47.761 47.618 47.424 47.445 47.054 46.962 47.253 47.153 47.914 47.371 47.934 47.474 48.714 45.817 48.259 48.565 47.62 47.702

101.918 100,097 101.311 101.193 99.916 100.933 100.303 101.203 100,708 100.236 99.857 100.174 99.892 99.835 100.438 99.945 99.639 100.43 100.313 99.91 100.336 100.035 100.556 100.499 101.125 99.653 100.605 99.849 99.301 99.678 100.068 100.455 99.424 101.123 100.584 101.672 95.679 101.173 100.699 99.792 100.791

N) vO LA

Feldspar Analyses

Plagioclase analyses Sample

Mg

Na

Al

Si

CI

K

Ti

Ca

F

Ba

Mn

Fe

o

P

Sum

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

ksp2plag, plag In ksp2plag, plag In ksp2plag, plag In ksp2plag, plag loZ ksp2plag, plag In ksp2plag, plag In ksp2plag, plag in ksp2plag, plag ncr ksp2plag, plag cor ksp2plag, plag cor ksp2plag, plag cor ksp2plag, plag cor ksp2plag, plag ncr ksp2plag, ncr rim ksp2plag loZptch r ksp2plag loZptch i ksp2plag loZptch r ksp2plag hiZzout r ksp2plag hiZzout i ksp2plag hiZzout 1 ksp2piag hiZzout 1 ksp2plag hiZzoutnr ksp2plag zout loZr ksp2plag rimz hIZr ksp2plag rimz loZI ksp2plag loZ plagr ab inci in cpx bg ab inci rm cpx bg

5.566 5.14 4.646 6.505 4,75 4.677 4.851 5.037 4.868 4.784 4.048 3.99 4.553 4.395 6.203 5.162 6.063 4.099 4.399 5.118 5.466 5.86 5.749 5.453 6.161 6,622 7.661 6,993

0 0.002 0 0 0,002 0 0 0,004 0 0 0 0 0,001 0,006 0 0,007 0,004 0 0,004 0,003 0 0 0 0,005 0 0,009 0,006 0.094

13,484 13,957 14,25 12,412 14,263 14,378 14,023 13,838 14,108 14,074 14.767 15.014 14.396 14.34 12.554 12.698 12.874 14.829 14.435 13.752 13.341 13.16 13.177 13.425 12.968 12.425 11.01 10.793

27.811 27.205 26.658 29.704 26.656 26.518 26.898 26,995 26,863 26,833 25,745 25,595 26,306 26,294 29.662 29.223 29.275 25.915 26.387 27.105 27.783 28.453 28.118 27.897 28.922 29.594 31.366 29.95

0 0 0.012 0 0.001 0 0.009 0 0.023 0.006 0 0 0.033 0.006 0,008 0,011 0,01 0 0,003 0,003 0,015 0 0,007 0,025 0,005 0,014 0,015 0

0.204 0.166 0.149 0.341 0.148 0.152 0.213 0.25 0.216 0.211 0.159 0.162 0.199 0.185 0.424 0.354 0.358 0.187 0.18 0,208 0,202 0.235 0.215 0.174 0.178 0.124 0.07 0.053

5.188 5.801 6.469 3.3 6.538 6.56 6.184 5.882 6.115 6.237 7.612 7.707 6.738 6.843 3.437 3.937 3.962 7.374 6.758 5.803 4.982 4.533 4.549 5.051 4.137 3.131 0.947 1.531

0.025 0.018 6 0 0.018 0.002 0.007 0 0 0.002 0.07 0.016 0.054 0.052 0.056 0.009 0 0,005 0 0.009 0,018 0 0 0.007 0.029 0.004 0 0.007

0.9 0.35 0 0.55 0.071 0.492 0.07 0 0.699 0 0 0 0 0.353 0.277 0 0 0 0 0 0 0.416 0.55 0 0 0 0 0.186

0.C13 0.003 0 0.004 0 0 0.006 0.006 0 0 0 0 0.003 0,016 0 0 0,02 0 0.013 0,024 0,007 0,034 0.015 0.004 0.013 0 0.006 0.031

0.131 0.144 0.151 0.088 0.138 0.156 0.125 0.174 0.183 0.113 0.182 0.192 0.17 0.187 0.15 0.213 0.23 0.139 0.196 0.133 0.137 0.16 0.844 0.092 0.079 0.866 0.09 0.692

0 0 0.004 0.016 0 0.011 0 0.016 0.012 0 0.003 0 0 0.02 0 0.009 0.01 0.027 0.004 0.003 0 0.002 0.011 0.003 0 0 0.009 0.005

47.41 47.458 47.324 48.3^ 47.374 47.134 47.33 47,293 47.104 47,322 47.051 47.081 47.172 46.986 48.542 48.113 48.656 47.203 47.237 47.311 47.504 47.905 47.645 47.71 48.364 48.609 48.629 46.981

100.732 100.244 99.663 101.27 99.959 100.08 99.716 99.495 100.191 99.582 99.637 99.757 99.625 99.683 101.313 99.736 101.462 99.778 99.616 99.472 99.455 100.758 100.88 99.846 100.856 101.418 99.809 97.316

SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6

plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi

5,928 5,785 5.574 3.609 4.098 4.566 4.608 4.79 4.444 5.033 4.819 4.886 4.992 4.481 5.066 4.979 4.896 5.012 5.019 4.928 4.844

0,002 0,006 0,001 0,001 0,004 0.01 0,008 0,013 0,009 0,01 0,014 0,008 0,013 0,002 0,015 0.008 0.01 0,008 0,006 0,008 0.01

11.569 13.077 12.989 15.01 14.559 14.115 13.936 13.837 14.149 13.544 13.797 13.568 13.428 14.107 13.509 13.483 13.659 13.618 13.688 13.578 13.685

29.466 28.01 27.747 24.955 25.596 26.565 26.721 26.822 26.249 27.211 26.939 27.017 27.432 26.353 27.453 27.46 27.206 27.301 27.175 27.118 27.093

0,013 0,004 0 0,001 0,006 0,009 0,007 0 0,015 0.01 0 0 0.008 0.007 0.005 0.009 0.008 0 0 0 0.007

2.798 0.162 0,266 0,156 0,263 0,35 0,39 0,422 0,358 0.64 0.437 0.46 0.546 0.312 0.516 0.49 0.442 0.426 0.402 0.328 0.4

2.154 4.468 4.707 8.039 7.225 6.399 6.11 6.028 6.503 5.432 5.993 5.78 5.455 6.596 5.456 5.592 5.794 5.676 5.741 5.732 5.79

0 0.002 0 0.002 0.007 0.009 0.02 0.029 0 0.02 0 0 0.004 0.038 0.009 0 0 0 0.016 0.009 0

1.022 0 0.345 0 0 0 0.21 0.21 0.35 0.417 0 0 0 0.14 0 0 0.07 0.07 0.693 0.624 0

0 0 0,01 0.029 0 0.038 0 0.024 0.029 0.003 0.024 0.004 0 0 0.021 0.003 0.028 0.025 0 0 0

0.07 0.28 0.236 0.22 0.256 0.303 0.302 0.264 0.26 0.228 0.31 0.248 0.27 0.224 0.324 0.242 0.287 0.223 0.269 0.285 0.229

0.015 0 0.007 0 0.012 0 0.012 0.01 0 0.001 0.013 0.008 0.003 0 0 0.013 0 0.002 0 0.009 0.008

46.966 47.46 46.975 46.354 46.573 47.146 46.994 47.063 46.647 47.011 47.246 47.039 47.318 46.86 47.456 47.437 47.32 47.367 47.058 46.888 47.203

100.003 99.254 98.857 98.376 98.599 99.51 99.318 99.512 99.013 99.56 99.592 99.018 99.469 99.12 99.83 99.716 99.72 99.728 100.067 99.507 99.269

rim near rim in In in in in in in in in in in hiZpatch n near core core core core core near core near core

N)

vO as

Feldspar Analyses

Plagioclase analyses .. —J Sample

SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6

Na

in pl^1 in plagi in pla^L plagi in plagi in plagi in plagi in plagi in plagi in plagi in plagi in plagi in plagi near rim plagi loZ inv nr plagi rim plagi rim plagi hiZfraydrlrr plagi hiZfraydrin' plagi loZfraydrin* plagi loZfraydrirr plagi loZ out rim plagi nr to act plagi rim to act plag toksp mtrx plag toksp mtrx plag toksp mtrx toksp mtn< plag plag toksp mtrx ab alt plag in ac ab alt plag In ac ab alt plag In ac ab alt plag in ac ab alt plag in ac plag in act, ncore plag in act, ncore plag in act, in plag in act, in plag in act, in plag in act, in plag in act, nrim plag in act, rim plag cryst, core plag cryst, ncore plag cryst, in plag cryst, rim zoned plag rim z1 zoned plag in z1 zoned plaq hiZr z1

Mg

A!

Si

CI

K

Ti

Ca

4.801 4.785 4.902 4791' 4.93 4.66 4.508 4.542 4.197 3.877 2.885 4.706 5.27 7.315 5.802 5.737 5.862 4.23 6.833 5.689 5.5 4.632 5.149 3.674 3.42 2.679 2.634 3.244 4.949 4.97 5.609 6.921 6.657 5.031 4.568 4.651 4.599 4.891 4.872 5.129 4.889 2.802 2.438 2.797 3.537 4,887 5.957 3.621

0.012 0^009 0.011 0.012 0.008 0.005 0.028 0.001 0.008 0.004 0 0.011 0.003 0 0 0.007 0.007 0 0 0.001 0.007 0.012 0.007 0 0 0.007 0.004 0.005 0.009 0.017 0.006 0.002 0 0.006 0.005 0.003 0.009 0.001 0.003 0.002 0.049 0.006 0.004 0.001 0.005 0.937 0 0.006

13.736 13.736 13.567 13.72 13.37 13,904 13,896 14,008 14,508 14,724 15,857 13,91 13,342 11,817 13,126 13,226 13.26 14,899 12.096 13.278 13.473 14.055 13.408 15.031 15,393 16.095 16.072 15.624 13.935 13.975 13.198 12.255 12.588 13.737 14.22 14.083 14.154 13.911 13.957 13.818 13.881 16.461 13.762 16.052 15.338 10.364 13.114 15.463

27.208 27.322 27.265 27.159 27.361 26.75 26.733 26.745 25.763 25.663 24.044 26.7 28.088 30.567 28.406 28.425 28.07 25.664 29.659 28,308 27.623 26.658 27.862 24.742 24.617 23.778 23.459 24.573 27.099 26.925 28.085 30.247 29.791 27.27 26.612 26.476 26.422 27.14 27.014 27,105 26,936 23.854 20.923 23.793 24.983 26.979 28.571 24.788

0.002 0.01 0.006 0.017 0.211 0.014 0.014 0.003 0.012 0 0 0 0.01 0 0 0 0.003 0 0.012 0.002 0 0.002 0.003 0.005 0.014 0.007 0.014 0.011 0.008 0 0.001 0.004 0.005 0.007 0.002 0.003 0 0 0.001 0 0.024 0.026 0.052 0.006 0.011 0.024 0.009 0.073

0.383 0.416 0.454 0.449 1.036 0.28 0.585 0.338 0.147 0.214 0.131 0.302 0.344 0.115 0.282 0.234 0.141 0.118 0.059 0.236 0.232 0.252 0.316 0.11 0.119 0.119 0.115 0.732 0.251 0.259 0.329 0.127 0.117 0.287 0.257 0.234 0.232 0.247 0.23 0.207 0.121 0.101 0,083 0.078 0.144 0.131 0.202 0.111

5^819 5.838 5.674 5.854 5.372 6.279 6.211 6.396 7.169 7.443 9.428 6.164 5.035 2.238 4.573 4.663 4.781 7.551 2.775 4.75 5.233 6.462 5.081 8.02 8.514 9.773 9.808 7.856 6.013 5.961 4.844 271 3.266 5.801 6.42 6.384 6.552 5.921 5.979 5.807 6.263 9.741 8.216 9.549 8.395 4.023 4.455 8.502

7.992

0

11.728

32.304

0.019

0.086

1,442

F

0.054 0 0 0

Ba

Mn

|Fe

P

Sum

0

0 0.004 0.029 0.02 0 0.004 0.025 0 0 0.009 0.009 0.007 0.02 0 0 0.029 0.011 0 0.018 0.049 0.043 0.004 0.018 0 0 0.002 0.036 0 0.054 0.02 0.04 0 0 0.02 0.029 0.002 0.011 0.014 0.016 0.014 0.009 0 0.027

1.036 0 0.279 0 0762 0 0.832 0 0 0.422 0.852 0 0 0.068 0 0.414 1.362 0 0 0 0.208 0.627 0 0 0 0 0.357 0.775 0.348 0.14 0 0.273 0.342 0.556 0 0 0 0.14 0 0 0 0 0.215 0.072 0 0.271 0.549 0.213

0.015 0.011 0.003 0.036 0.024 0 0.031 0 0 0 0.029 0.013 0 0.031 0.01 0.014 0.007 0 0 0 0.028 0.011 0.018 0 0 0.024 0 0 0 0 0 0.029 0.027 0.006 0 0.032 0.004 0.024 0.011 0.008 0.015 0.025 0.011 0 0.006 0.049 0.035 0

0,282 0.278 0.291 0.246 0.215 0.299 0.586 0.307 0.257 0.317 0.248 0.254 0.241 0 0.173 0.214 0.211 0.168 0.064 0.196 0.186 0.301 0.291 0.255 0.353 0.487 0.394 0.288 0.404 0.346 0.402 0.107 0.123 0.307 0.312 0.325 0.281 0.291 0.353 0.363 0.426 0.34 0.323 0.338 0.281 2.378 0.583 0.47

0 0.009 0.001 0 0.006 0 0 0.001 0 0.016 0.014 0.017 0 0.002 0 0 0.015 0.008 0.002 0 0.007 0 0 0 0.007 0.019 0 0.01 0.007 0 0.012 0 0 0.007 0.004 0 0.003 0.006 0.004 0 0 0.012 0.017 0 0.02 0 0.009 0.002

47.01 47.526 47.17 47,329 46,852 47,117 46,832 47,244 46,7 46.636 46.037 47.076 47.854 48.783 48.001 47.959 47.271 47.076 48.069 48.044 47.513 46.959 47.649 46.148 46.492 46.468 45.845 46.091 47.426 47.321 47.827 48.829 48.682 47.316 47.286 47.038 47.05 47.452 47.449 47.446 47.419 46.831 40.252 46.265 46.837 44.49 48.066 46.727

100.438 99.94 99.623 99.613 100.147 99.308 100.26 99,614 98.781 99.316 99.529 99.178 100.187 100.936 100.382 100.902 100.997 99.734 99.569 100.504 100.039 99.982 99.784 98.003 98.978 99.499 98.706 99.227 100.449 99.914 100.315 101.54 101.598 100.385 99.706 99.269 99.306 100.024 99.893 99.914 100.025 100.21 86.31 98.967 99.571 94.542 101.55 100.003

0

0

0.02

0.227

0.009

50.691

104.518

- 'O

1 SMCM-7a loZ outside Ksp

hO "sO -J

Feldspar Analyses

-

Plagioclase analyses Sample

---

SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a

plagi rim plagi _ near rim in plagi plagi in plagi in plagi core ? core? plagi plagi core ? plagi in piagi in plagi in plagi rim? plagi out plag out plag plagi plag to hbl plag near ri pla^ to hbl plag rim to

SMCM-lli Ksp SMCM-11< Ksp SMCM-11< Ksp SMCM-11c plag SMCM-11< plag SMCM-11< plag SMCM-11E plag SMCM-11< plag SMCM-11 plag SMCM-lli plag SMCM-11 plag SMCM-11 plag SMCM-11 ab SMCM-11 ab SMCM-11 ab SMCM-11 ab SMCM-11 plag SMCM-11 plaq SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag SMCM-11 plag

—--

Na

adj blol xi; adj blo1 xl^ (blol) abin Incl hrZ mi inci hrZ in Incl hrZ cr incl hrZ cr incl hrZ in incl hrZ cr incl hrZ in incl hrZ nr incl hrZ rm rpl Ksp? @ rpl Ksp?, ri rpl Ksp?, K rpl Ksp?ab big plaq rirr big plag nr biq plag ha big plag ne biq plag in biq plaq in big plag ha big plag ha big plag ha big plag ha biq plaq ha big plag ha big plag ha biq plaq ha big plag ha biq plaq ha

A!

CI

Si

K

^Ca

6.846 6"536 5.249 5.201 5.285 4.111 5.116 4.588 4,428 4.641 4,468 5,087 6.698 8.079 5.92 7.594

0.009 0.009 0.001 0 0.004 0 0.001 0 0.004 0.003 0.001 0.006 0 0 0 0.012

12.345 12.792 13.872 13.921 13.626 14.187 13,992 14.435 15.022 14.234 14.305 13,711 12,116 10,739 13,279 11,734

29.972 30.476 27.447 27.509 27.045 25.251 27.377 26.758 26.048 26.728 26.441 27.274 30.355 32.542 28.443 31.05

0 0.013 b 0 0.007 0.012 0.004 0 0 0 0.001 0 0.004 0.005 0.002 0.002

0.177 0.213

8,022 8.626 8.206 5.522 6.796 4.984 4.911 5.364 5.982 6.231 6.447 6.322 7.482 6.638 5.136 7.644 5.113 6.414 5.499 7.19 7.146 6.967 6.504 5.557 5.41 5.656 4.63 5.451 5.047 5.095 4.996 5.212

0 0.008 0.009 0.005 0 0.017 0.026 0 0 0 0.005 0 0.005 0.003 0.037 0.017 0.004 0 0.168 0 0 0.002 0,005 0 0,004 0.002 0 0.005 0 0 0 0.011

11.036 10.442 10.491 11.995 12.225 12.869 12.851 13.663 12.571 12.645 12.653 12.587 11.643 11.773 10.309 10.548 9.354 11.564 11.891 11.92 11.888 12.071 12.476 13.411 13.547 13.38 14.418 13.44 13.885 13.868 13.823 13.607

31.116 31.874 31.639 26.833 29.437 26.118 26.28 27.374 27.852 28.546 28.648 28.645 30.27 29.538 30.25 31.086 33.156 30.614 27.534 29.653 29.845 29.361 29.146 27.658 27.319 27.754 26.278 27.647 27.01 26.874 26.96 27.263

0.006 0.051 0.009 0 0 0.017 0.003 0 0.006 0.007 0.012 0.004 0 0.048 0.199 0.17 0 0.005 0.018 0.004 0.029 0 0.009 0.023 0.004 0 0 0 0.003 0.006 0.002 0.004

TI

F

0,208 0,257 0,187 0,286 0.217 0.179 0.216 0.173 0.179 0.206 0.079 0.145 0.179

3.074 " 3.3b8 5.775 6.01 5.696 7.293 5.59 6.679 7,299 6.513 6.93 6.064 3.096 0.456 4.919 2.325

0 0.011 0.004 0.013 0 0.011 0 0.034 0 0.025 0.002 0.004 0 0

0 0.052 0.018 0.009 0 0 0 0.009 0 0.079 0.026 0 0 0.051 0 0.017

0.246 0.601 1 0.233 0.22 0.159 0.157 0.155 0.194 0.202 0.171 0.185 0,26 1,221 5.754 1.741 0.129 0.179 0.284 0,231 0.23 0.206 0.227 0.255 0.251 0.311 0.235 0.383 0.361 0.25 0.418 0.451

1.136 0.036 0.273 3.862 3.152 5.433 5.35 5.432 3.985 3.974 3,845 3,796 2,103 2,454 0,457 0,527 2,424 2,961 2,342 2.571 2.492 2.853 3.471 5.161 5.313 5.003 6.661 5.002 5.764 5.767 5.834 5.482

0 0,013 0.004 0 0 0.002 0.016 0 0 0 0.022 0 0.025 0 0.029 0.02 0.023 0 0.025 0.027 0 0.016 0.029 0.047 0 0.016 0.05 0.02 0.02 0 0.016 0

0 0 0 0.067 0 0 0 0 0 0.331 0 0 0,261 0 0.266 0.13 0 0.396 0.392 0.197 0 0 0 0 0.733 0 0.472 0.268 0 0.403 0 0

ai85

0.018

Ba Zn

6

Mn

0.059 0.007 0 0.039 ^ 0.023 0.009 0 0.045 0 0.018 0.045 0.007 0.077 0.046 0 0

Fe

o

nP

0.013 0 0 b.004 0.01 0 0 0.004 0.007 0.004 0.014 0 0.006 0.013 0.014 0.013

0.166 0.153 ^ 0.143 0.262 0.197 0.264 0.222 0.379 0.279 0.173 0.232 0.132 0.175 0.023 0.269 0.17

0 0.006 0.013 0.016 0 0.001 0.017 0.014 0 0 0 0 0.003 0.003 0.013 0.032 0.006 0 0.011 0.003 0.004 0.008 0.034 0.011 0.013 0.001 0.006 0 0.018 0.001 0.014 0.021

0.125 0.101 0 0.179 0.148 0.196 0.177 0.166 0.211 0.189 0.184 0.18 0.194 0.168 0.373 0.112 0.072 0.135 0.866 0.137 0.137 0.124 0.129 0.191 0.147 0.209 0.208 0.171 0.152 0.176 0 0.194

0.012

Sum

0 0.01 0 0 0.011 0.009 0 0.003 0.007 0 0 0.017 0 0.007

48.875 49.781 47.816 48.08 47.169 45.854 47.787 47.771 47.616 47.424 47.287 47.558 49.043 49.664 48.353 49.483

101.566 103.351 100.506 101.2M 99.323 97.181 100.386 100.905 100.882 100.07 99.93 100.043 101.778 101.718 101.344 102.586

0 0.001 0.003 0.009 0.001 0.009 0 0.011 0.019 0 0 0 0 0.016 0 0 0.016 0 0 0 0 0.007 0 0.013 0.011 0.001 0.012 0 0.001 0 0.009 0

48.599 48.778 48.564 44.795 48.126 45.218 45.334 47.475 46.712 47.482 47.778 47.637 48.307 47.726 46.78 48.001 48.931 48.488 45.064 47.939 48.141 47.855 48.068 47.59 46.985 47.626 46.995 47.38 47.319 46.96 47.191 47.328

100.286 100.537 100.211 93.516 100.105 95.023 95.122 99.654 97.532 99.607 99.765 99.356 100.553 99.588 99.603 100.028 99.228 100.756 94.094 99.872 99.912 99.47 100.098 99.917 99.737 99.959 99.965 99.767 99.58 99.4 99.263 99.573

o.ofli

K) OQ

Feldspar Analyses

Plagioclase analyses Sample

Na

SMCM-1 iplag SMCM-1 9Plag SMCM-1 4 plag SMCM-1 dpiag SMCM-1 ftlag SMCM-1l^plag SMCM-1 ^plag SMCM-1 dpiag SMCM-1 dpiag SMCM-1 dpiag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 ^piag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 Splag SMCM-1 ^plag SMCM-lT$plaQ SMCM-1 dpIag SMCM-1l^plag SMCM-1 dpIag SMCM-1 dpIag SMCM-11^ plag SMCM-1 ^lag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 Iplag SMCM-1 dpIag SMCM-1 ^lag SMCM-1 ^piag . SMCM-1 ^Plag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpIag SMCM-1 dpiag SMCM-1 dpIag SMCM-1 dpiag SMCM-1 dpiag SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1

|

Iplag Iplag Iplag jplag

Iplag Iplag

Iplag

Mg

At

Si

CI

1K

tea

Ti

F

Ba

Mn

Fe

P

0

Sum

big plag hJ big plag ha^ big plagnd bigpiag nei big plag co big plag co big plag co big plag nd big plag nd big plag ha^ big plag hd big plag ha^ big plag ha^ big plag ha^ big plag hd big plag hd big plag ha^ big plag ha^ big plag ha| big plag ha| big plag nd big plag ne^ big plag ha^ big plag frd big plag frd big plag frd big plag frd big plag frd big plag frd big plag frd big plag frd big plag frd ^ big pia^ frd big plag frj big plag frd big plag frd big plag frd big plag frd big plag frd big plag frd big plag ab big plag abj

4.96 5.208 4.957 4.782 4.914 4.615 4.7 4.826 4.898 4.967 4.951 4.995 4.825 5.166 5.084 5,068 5,101 5,095 5.128 5,576 4.889 5.17 4.578 6,278 5,831 6,165 6,237 5,871 5,418 6,149 6.276 6,037 6,242 6,44 6,139 6,295 6.434 6.794 6.884 7.158 6.605 7.469

0.002 0 0.003 0.001 0 0.004 0 0 0.001 0.004 0 0.005 0.004 0.012 0.002 0 0.008 0 0 0.002 0 0.002 0.103 0.013 0 0.012 0.004 0,022 0.091 0.007 0.007 0.006 0.007 0 0.006 0 0 0.077 0.002 0 0.102 0.007

13.751 13.345 13.824 ^ 13.911 13.777 14,153 14,132 14,131 14,049 13.909 13.909 13.846 14.069 13.813 13.653 13.752 13.754 13.753 13.774 13,45 14.061 13.846 12.302 11.901 13.33 12.759 12.707 12.904 13,259 12,916 12,506 12.898 12.429 12.604 12,884 12.565 12.657 11.927 12.297 11.717 11.162 11.528

27.237 27.591 26.946 26.778 26.917 26.677 26.608 26.721 26.875 26,97 26.873 27.02 26.687 27.207 27.167 26.896 27.276 27.013 26.93 27.607 26.654 27.055 25.593 27.873 27.869 28.464 28.645 28.078 27.536 28.383 28.266 28.292 28.337 28.709 28.463 28.763 28.965 29.116 29.345 30.115 28.906 30.224

0.003 0,001 6,009 0 0 0 0,011 0,002 0.003 0 0.005 0 0 0.004 0.003 0.003 0 0 0 0 0.004 0 0.047 0.041 0.006 0.009 0 0.006 0.016 0.007 0.007 0.002 0.008 0.004 0 0.001 0,003 0.015 0.004 0 0.016 0.006

0.504 0.747 0.458 0.448 0.487 0.413 0.42 0.416 0.419 0,47 0,472 0.445 0.418 0.492 0.498 0.462 0.421 0.389 0.326 0.335 0.214 0.172 0.145 0.173 0.178 0.234 0.262 0.225 0.22 0.232 0.243 0.242 0.254 0.259 0.265 0.251 0.294 0.316 0.231 0.345 0.252 0.294

5,431 5.005 5.799 5.94 5.735 6.256 6.206 6.123 5.967 5,803 5,72 5,773 6,038 5,48 5,438 5,668 5.538 5.812 5.632 4.882 6.02 5.611 3.361 2.97 4.853 3.878 3.888 4.239 4.198 4.197 3.818 4,209 3,828 3.718 3.993 3.777 3.698 2.394 3.169 2.32 1.773 1,939

0.038 0 O.OO9I 0.045 0.009 0.002 0 0.025 0 0.002 0 0.029 0.011 0.013 0 0.016 0 0.043 0.002 0.007 0.02 0,014 0 0 0,009 0 0 0.013 0.011 0 0.009 0 0.002 0 0 0.009 0.009 0.011 0.047 0.02 0 0.002

0.269 0 0.135 0 0 0.472 0 0.871 0.27 0.403 0 0.135 0 0.801 0.135 0 0 0.67 0.067 0.201 0 0.669 0 0.066 0 0.133 0.332 0.133 0.793 0.53 0 0.53 0 0 0 0.986 0.397 0 0.132 0.459 0.066 0.196

0,01 0.003 0.032 0.003 0.028 0.004 0 0.007 0.013 0.018 0.01 0.003 0,016 0,008 0 0,02 0 0,007 0,025 0 0 0 0,013 0 0 0.006 0 0.01 0 0 0 0.018 0.006 0.004 0.024 0.007 0 0.008 0 0.014 0.006 0

0.203 0.194 0.168 0.208 0.167 0.189 0,139 0,171 0.161 0.171 0.17 0.219 0.125 0.145 0.176 0.185 0.139 0.176 0.133 0.184 0.156 0.144 0.446 0.081 0.151 0.171 0,139 0.167 0.34 0.153 0.096 0.163 0.137 0.13 0.158 0.169 0.133 0.21 0.093 0.132 0.271 0.1

0.01 0 0^ 0 0 0.023 0.007 0.003 0 0.002 0.007 0,019 0,003 0 0,013 0,008 0,006 0.009 0.003 0 0.002 0.007 0.011 0.006 0 0.006 0 0 0.008 0 0.018 0 0.009 0.006 0.001 0 0 0.006 0.005 0.007 0,005 0

47,249 47,326 47,139 47,102 47,085 47,063 47,132 46,928 47,226 47,133 47.152 47,29 47.151 47.093 47.151 47.076 47.436 46.994 47.058 47.351 47.084 46.994 43.27 45.751 47.66 47.53 47.618 47.268 46.61 47.515 47.147 47.37 47.151 47.744 47.732 47.339 47.912 47.293 48,089 48,093 46,042 48,075

99,667 99,42 99.479 99.218 99.119 99.871 99.355 100.224 99.882 99.852 99.269 99.779 99.347 100.234 99.32 99.154 99.679 99.961 99.078 99.595 99.104 99.684 89.869 95.153 99.887 99.367 99,832 98,936 98.5 100.089 98.393 99.767 98.41 99.618 99.665 100.162 100.502 98.167 100,298 100.38 95.206 99.84

half-traverd half-travera fialf-traverd half-traverd half-travers half-travera fialf-traver^

0,07 0,063 0,066 0.066 0,07 0.063 0.062

0.001 0 0.006 0 0 0 0.002

12.802 13.507 13.24 13.154 13.012 13.457 13.598

28.314 27.473 27.762 27.816 27.979 27.255 27.287

0 0.011 0.004 0 0 0.005 0

0.275 0.265 0.307 0.347 0.33 0.278 0.28

5.182 6.164 5.83 5.649 5.426 6,18 6.292

0 0 0.007 0.013 0 0.046 0.013

0 0,001 0,007 0 0 0 0,015

0.004 0,014 0 0,016 0 0 0.014

0.181 0.178 0.167 0.152 0.187 0.174 0.187

0 0,005 0,008 0,005 0 0 0,003

45,848 45,912 45.884 45.802 45.76 45.646 45.845

92.677 93.593 93,288 93.02 92.764 93.104 93.598

K> VO vO

Feldspar Analyses

Plagioclase analyses Sample

SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1

half-travers half-travers half-traveri half-traveri half-travers traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse

Al

Mg

Na

plag plag plag plag plag plagi plagi plaqi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag? plag? plag? plag? plag? plag? plag? plag?

0.07 0.066 0.072 0.0^ 0.07 0.072 0.072 0.077 0.077 0.075 0.075 0.075 0.074 0.074 0.074 0.075 0.075 0.075 0.076 0.073 0.075 0.075 0.074 0.075 0.066 0.069 0.067 0.068 0.067 0.069 0.066 0.062 0.066 0.063 0.066 0.063 0.066 0.067 0.068 0.068 0.069 0.069 0.064 0.061 0.059 0.057 0.065 0.063 0.063 0.063

0.002 0.002 0 0.002 0 0 0 0 0 0 0.003 0 0 0 0.005 0 0 0 0 0 0.003 0.002 0 0 0.002 0 0.001 0 0.006 0 0 0 0 0 0 0.002 0 0.002 0 0 0 0.002 0 0 0.002 0.015 0.002 0.002 0 0.001

SI

12.841 13.146 12.487 12.765 12.843 12.854 12.852 12.68 12.54 12.572 12.683 12.706 12.932 12.861 12.586 12.863 12.719 12.651 12.672 12.91 12.876 12.637 12.856 12.981 13.333 13.414 13.32 13.016 13.315 13.239 13.478 13.917 13.158 13.395 13.459 13.552 13.239 13.254 13.377 13.29 13.131 12.881 13.311 13.56 13.817 13.675 13.3 13.255 13.42 13.334

CI

28.44 27.987 29.088^ 2a745 28.635 27.866 28.221 28.075 28.166 28.02 28.226 27.963 28.034 28.03 27.824 28.816 28.092 27.835 27.948 28.421 28.407 28.089 27.778 28.022 27.111 27.457 27.003 27.282 27.428 27.7 27.354 26.656 26.815 26.728 27.334 26.635 27.107 27.639 27.51 27.305 27.271 27.073 27.226 27.072 26.777 26.286 27.674 27.123 27.679 27.336

K

0.006 0.001 0.002 0 0 0.004 0 0 0 0.009 0.01 0.007 0 0.004 0.005 0.003 0.005 0.008 0.002 0.005 0.004 0 0.011 0.002 0 0.003 0.001 0 0 0 0 0 0.002 0.013 0 0 0.015 0 0.015 0.002 0 0 0.006 0.009 0 0 0.001 0.001 0 0.005

Ti

ra

6,389 0.356 0.461 0.494 0.47 0.274 0.285 0.297 0.3 0.329 0.297 0.286 0.268 0.283 0.296 0.292 0.314 0.317 0.298 0.269 0.307 0.287 0.23 0.208 0.261 0.305 0.314 0.39 0.364 0.376 0.298 0.235 0.277 0.252 0.28 0.251 0.299 0.317 0.338 0.281 0.305 0.283 0.275 0.277 0.292 0.246 0.337 0.374 0.342 0.379

5.208 5.724 4.694 4.995 5.166 5.542 5.393 5.023 4.931 5.088 5.178 5.175 5.271 5.211 5.176 4.976 5.066 5.106 5.172 5.197 5.169 5.12 5.478 5.382 6.193 5.874 6.227 5.849 6.001 5.87 6.158 6.924 6.284 6.455 6.186 6.595 6.172 5.96 6.003 5.945 5.896 5.878 6.025 6.281 6.61 6.847 5.754 6.077 5.994 5.976

nF 0.002 0 0.007 0 0 0.003 0 0 0.016 0.002 0.015 0 0.008 0.007 0 0.007 0 0 0 0 0 0.005 0 0.014 0 0.04 0.022 0 0.005 0 0 0 0 0 0.019 0 0.007 0.012 0.011 0 0 0.017 0.018 0 0.01 0.003 0 0.02 0 0

Ba

0 0 0.014 0 0.004 0 0 0 0.011 0 0.008 0 0 0 0.005 0.026 0.007 0 0.007 0.003 0 0 0 0 0.016 0 0 0 0 0 0.016 0 0.012 0 0.005 0 0 0 0 0 0 0 0 0.001 0 0.007 0.011 0.012 0.056 0

Mn

Fe

0.005 0 0 0 0.005 0.02 0.007 0.006 0.01 0.01 0 0.006 0.004 0 0 0.015 0.003 0 0 0.009 0.017 0.019 0.011 0.003 0.006 0.036 0 0.012 0 0.018 0.011 0 0 0.005 0.014 0 0 0 0.011 0 0.005 0.024 0 0.006 0 0 0 0.005 0.026 0.004

0

P

o.uil 0.19? 0.196 0.153 0.179 0.124 0.133 0.148 0.122 0.109 0.149 0.12 0.129 0.142 0.117 0.142 0.166 0.13 0.123 0.143 0.179 0.17 0.157 0.182 0.199 0.208 0.192 0.197 0.166 0.177 0.194 0.2 0.202 0.163 0.182 0.211 0.209 0.207 0.178 0.152 0.18 0.2 0.15 0.179 0.199 0.182 0.165 0.182 0.16 0.199

0.007 0.007 0.006 0.004 0 0.007 0.003 0.013 0.009 0.01 0.003 0.008 0.008 0.005 0.005 0.011 0.013 0.008 0.005 0.01 0.009 0.003 0.008 0.008 0 0.003 0.001 0.001 0.002 0.004 0 0.004 0.004 0.004 0.01 0.01 0.005 0 0.002 0.001 0 0 0 0.002 0.005 0.006 0.002 0.002 0.005 0.007

Sum

46.058 46.023 46.307 46.272 46.282 45.527 45.863 45.416 45.359 45.278 45.65 45.356 45.678 45.589 45.09 46.406 45.495 45.141 45.306 46.073 46.039 45.432 45.4 45.76 45.355 45.744 45.257 45.159 45.641 45.838 45.753 45.642 44.903 45.069 45.743 45.179 45.278 45.813 45.793 45.427 45.241 44.805 45.395 45.543 45.587 44.985 45.799 45.285 46.014 45.556

93.169 93.503 93.334 93.5 93.654 92.293 92.829 91.735 91.541 91.502 92.297 91.702 92.406 92.206 91.183 93.632 91.955 91.271 91.609 93.113 93.085 91.839 92.003 92.637 92.542 93.153 92.405 91.974 92.995 93.291 93.328 93.64 91.723 92.147 93.298 92.498 92.397 93.271 93.306 92.471 92.098 91.232 92.47 92.991 93.358 92.309 93.11 92.401 93.759 92.86

8

Feldspar Analyses

Plagioclase analyses Sample

Na

SMPG-1 plag? SMPG-1 plag? SMPG-1 plag? SMPG-1 plag SMPG-1 plag SMPG-1 plag SMPG-1 plag SMPG-1 Iplag SMPG-1 plag SMPG-1 plag SMPG-1 plag SMPG-1 plag SMPG-1 plag

traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse

SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse traverse

plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plagi plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2 plag2

1

Mg

Al

SI

CI

K

Ca

Ti

F

Ba

Mn

P

Fe

0

Sum

0.062 0062 0.065 0.563 0.067 0.062 0.067 0.066 0.066 0.067 0.065 0.065 0.059

0.003 0 0.003 0 0.003 0.002 0 0 0 0.001 0 0 0.049

13.336 13.419 13.288 13.47 12.916 13.42 12.876 13.089 12.991 12.995 13.121 13.062 13.37

27.264 27.399 27.597 27.122 27.745 27.068 27.822 27.801 27.742 27.866 27.574 27.803 26.838

0.006 0.003 0.001 0 0 0.001 0.002 0.002 0 0.004 0 0 0

0.37 0.331 0.348 0.196 0,298 0.339 0.434 0.413 0.424 0.509 0.488 0.483 0.404

6.051 6.006 5.798 6.317 5.593 6.323 5.429 5.567 5.702 5.532 5.693 5.58 6.441

0,039 0,03 0 0,014 0,019 0,013 0,004 0 0,017 0 0.004 0.007 0.008

0.012 0,01^ 0,01 0,033 0,003 0 0 0 0,026 0,016 0.005 0 0.031

0,008 0 0 0 0 0,004 0 0,01 0 0,009 0 0,002 0

0,165 0,215 0,159 0,19 0,188 0,231 0,175 0.179 0.153 0.177 0,152 0,193 0,223

0,002 0 0 0,006 0,001 0 0 0 0 0,009 0.005 0 0.006

45,517 45,719 45,715 45,535 45,483 45,466 45,483 45,7 45.602 45,707 45,532 45,703 45,251

92.835 93.2 92.984 92.946 92.316 92.929 92.292 92.827 92.723 92,892 92,639 92,898 92.68

0.066 0.074 0.066 0.064 0.071 0.069 0.073 0.066 0.067 0.065 0.067 0.062 0.067 0.062 0.064 0.093 0.099 0 103 0.099 0.068 0.062 0.065 0.063 0.062 0063 0.058 0.064 0.06 0.058 0.066 0.061 0.064 0.063 0.057 0.06 0.063

0 0 0 0 0.004 0.001 0 0.003 0 0 0 0.006 0.006 0 0 0 0.003 0.003 0 0 0 0 0 0 0 0.001 0 0 0 0 0 0.006 0 0.002 0.001 0

13.295 12.576 13.259 13.442 12.866 12.92 12.647 13.059 13.108 13.258 13.033 13.407 13.101 13.374 13.26 11.42 11.192 11.225 11.11 12.945 13.506 13.059 13.455 13.505 13.347 13.857 13.512 13.744 13.474 12.986 13.688 13.28 13.259 13.959 13.452 13.285

27.412 28.49 27.601 27.416 28.026 27.626 28.719 27.526 27.801 27.451 27.624 27.116 27.869 27.05 26.992 31.705 32,304 32.723 32.366 27.374 27.007 27.249 26.856 27.09 27.093 26.614 27.39 26.459 26.109 27.251 26.628 27.459 26.984 26.573 26.549 27.291

0 0.006 0 0.003 0.002 0.004 0 0 0.007 0 0.01 0.002 0.008 0.011 0.008 0 0.004 0 0 0.008 0.007 0.003 0 0,009 0 0,008 0,006 0,002 0,01 0,003 0 0,017 0,002 0,006 0 0.006

0.162 0.153 0.193 0,182 0,204 0,239 0,341 0,295 0,314 0.282 0.322 0.25 0.31 0.217 0.21 0.278 0.25 0.174 0.229 0.229 0.264 0.325 0.291 0.311 0.327 0.259 0.326 0.27 0.258 0.328 0.265 0,345 0.314 0.265 0.29 0.321

5.889 4.78 5.871 6,116 5,312 5,507 4,703 5.679 5.685 5.918 5.612 6,157 5,532 6,28 6,154 2,431 2,025 1.607 1.641 5.754 6.264 5.854 6.348 6.202 6.149 6.894 6.12 6.756 6.908 5,782 6,694 6,067 6.05 6,983 6,572 6,225

0.013 0,017 0 0.002 0,022 0,017 0,004 0,025 0 0,002 0,011 0,014 0 0,01 0 0 0,018 0,013 0.002 0.013 0 0 0.035 0.023 0,026 0,001 0 0 0 0 0,028 0.001 0.046 0.016 0.006 0,008

0.019 0 0 0 0 0,003 0 0 0 0.037 0.029 0 0 0 0.075 0 0.034 0.011 0.008 0 0.004 0.011 0 0.046 0 0.018 0.011 0 0,01 0 0 0 0 0 0,042 0

0 0,009 0 0,011 0,013 0 0,012 0 0 0,013 0 0.004 0 0.012 0 0 0.014 0 0 0 0 0.003 0.006 0 0 0.002 0.035 0.016 0.003 0.027 0.011 0 0.013 0 0.024 0

0.208 0.104 0.137 0.138 0.171 0.152 0,15 0,154 0,14 0,15 0,172 0,173 0,144 0,159 0,177 0,147 0,181 0.097 0.206 0,154 0.162 0.175 0.161 0.195 0.199 0.177 0.2 0.172 0.176 0.13 0.171 0.175 0.174 0.192 0.167 0.147

0.003 0.009 0.008 0.004 0,004 0.005 0.004 0.011 0.008 0.002 0 0.003 0.006 0 0.293 0.003 0.007 0.011 0 003 0.003 0,001 0,001 0,006 0,004 0,007 0,001 0 0.004 0.003 0 0.004 0.004 0.003 0.013 0.003 0

45,535 45,663 45,694 45,741 45,635 45.299 45.994 45.403 45.74 45.559 45.45 45.417 45.75 45.342 45,497 47,384 47.731 48.03 47.556 45.124 45.405 45.137 45.258 45.513 45.365 45.525 45.822 45.2 44.615 45.039 45.335 45.67 45.125 45.634 44.979 45.528

92.602 91.881 92,829 93,119 92,33 91,842 92,647 92,221 92,87 92,737 92.33 92.611 92.793 92.517 92.73 93.461 93,862 93,997 93.22 91.672 92.682 91.882 92.479 92.96 92.576 93,415 93,486 92,683 91,624 91,612 92,885 93.088 92.033 93.7 92.145 92.874

O

Feldspar Analyses

Plagioclase analyses -

Sample

Na

Mg

Al

Si

CI

K

Ti

Ca

F

Ba

SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

plag2 plag2 plag2 plag2 plag2 plag2 plag plag plag plag

traverse traverse traverse traverse traverse traverse unplanned unplanned unplanned unplanned

0.061 0.064 0.068 o^oes 0.063 0.102 0.062 0.061 0.068 0.071

0 0 0 0 0 0 0.002 0 0 0

13~42 13.262 13.06 12.933 13.498 11.137 13.408 13.912 13.019 12.982

"27.039 27.407 27.673 "27.M7 27.023 33.379 27.228 27.259 27.57 28.137

0 0.01 0.006 0.003 0.011 0.008 0 0 0.005 0.003

0.3 0.31 0.319 0.3 0.19 0.233 0.291 0.261 0.314 0.272

6.259 6.018 i644 5.503 6.247 1.254 6.208 6.355 5.58 5.237

0 0.003 0 0 0 0.024 0 0.002 0.002 0

0 0.018 0.005 0.00/ 0 0 0 0 0.019 0.019

SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3

unknown (surrounding plag1 traverse plagi traverse plag1 traverse plagi traverse plagl traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plag! not h traverse plag! not h traverse plag! not h traverse plag! not h traverse plagl not h traverse plag! not h traverse plag! not hbll? plag! not hi rim plag! not h rim plag near ntraverse plag near ntraverse plag near ntraverse plag near ntraverse plag near ntraverse plag near ntraverse plag near tjtraverse plag near Htraverse plag near ntraverse plag near htraverse plag near ntraverse plag near Htraverse plag near nrim plag near tj rim plag near nrim K-spar in rr apparently K-spar in J apparently K-spar in nlapparentlv

7.668 4.913 5.315 4.574 5.344 5.223 5.194 5.332 5.016 4.905 5.392 4.826 5.235 5.141 5.23 4.941 5.011 5.125 5.421 5.48 5.289 5.398 5.487 5.515 4.774 4.728 5.201 5.131 5.234 4.582 5.167 5.171 5.427 7.848 7.865 7.8 8.07 8.158 8.24

0.007 0.001 0.006 0.005 0.003 0.002 0.001 0 0 0.005 0.002 0.001 0 0 0.001 0 0.004 0.002 0 0 0.003 0.01 0.003 0 0.003 0.004 0.005 0.002 0.008 0.007 0 0 0 0 0 0.004 0 0.003 0.004

11.466 13.982 13.569 14.207 13.464 13.515 13.49 13.467 13.922 13.988 13.497 14.093 13.635 13.5 13.526 13.771 13.596 13.306 13.374 13.347 13.38 13.352 13.356 13.38 14.227 14.229 13.605 13.812 13.619 14.373 13.594 13.673 13.56 11.082 11.103 11.183 10.722 10.767 10.818

30.75 26.712 27.059 26.049 27.206 27.048 26.927 27.338 26.681 26.49 27.34 26.342 26.753 26.774 26.856 26.724 26.682 26.873 27.089 27.263 26.975 27.064 27.084 27.138 26.041 26.142 26.554 26.71 26.886 25.931 26.974 26.843 27.087 30.801 30,73 30.908 31.258 31.373 31.159

0.066 0.037 0.133 0.304 0.011 0.162 0.2 0.092 0.078 0.069 0 0.192 0.061 0 0.059 0 0.049 0 0.003 0.04 0.009 0 0.225 0 0 0.065 0 0.048 0 0 0.004 0.204 0 0.033 0 0 0.1 0 0

0.278 0.163 0.219 0.183 0.28 0.268 0.299 0.306 0.266 0.263 0.297 0.18 0.24 0.259 0.271 0.25 0.283 0.256 0.194 0.167 0.196 0.206 0.229 0.239 0.194 0.201 0.211 0.22 0.207 0.15 0.21 0.181 0.186 0.174 0.14 0.206 0.241 0.178 0.247

1.776 5.957 5.403 6.599 5.3 5.417 5.486 5.268 5.916 6.063 5.199 6.212 5.68 5.603 5.508 5.834 5.501 5.569 5.235 5.131 5.365 5.308 5.187 5.286 6.348 6.422 5.767 5.677 5.423 6.708 5.546 5.839 5.324 1.498 1.51 1.394 0.899 0.849 0.723

0.029 0.008 0.021 0 0.031 0 0 0 0.013 0.006 0.013 0 0 0.025 0 0.037 0.006 0.015 0.005 0 0 0.015 0.012 0.012 0.009 0.017 0.021 0.018 0.014 0.007 0.014 0.02 0.005 0 0.032 0.01 0.025 0 0.008

0 0.009 0 0.02 0 0 0.02 0 0 0.018 0 0 0.016 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0.014 0 0 0 0 0 0 0.001 0 0 0.021 0.015

0.003 0.018 0.014 0.016 0 0.007 0.004 0 0 0

0.177 0.156 0.156 0.172 0.168 0.072 0.155 0.146 0.194 0.146

0 0 0.01 0 " 0.001 0 0.007 0.002 0 0.005 0

45.374 45.572 45.5^ 45.566 45.396 48.565 45.556 46.083 45.368 45.816

92 633 927848 92.479 92.416 92.596 94.788 92.916 94.079 92.144 92.683

0 0 0 0.014 0.002 0 0 0.029 0 0.011 0.004 0 0 0.02 0 0 0 0 0 0.014 0 0.014 0 0.025 0.007 0.001 0.023 0.002 0.008 0 0 0.035 0.014 0 0.004 0.006 0.01 0.003 0.011

0.151 0.178 0.179 0.139 0.185 0.178 0.159 0.142 0.192 0.148 0.167 0.139 0.145 0.17 0.173 0.166 0.141 0.167 0.177 0.11 0.156 0.179 0.164 0.153 0.154 0.201 0.177 0.178 0.16 0.12 0.117 0.115 0.132 0.068 0.037 0.073 0.023 0.038 0.045

0.016 0.001 0.005 0.006 0 0.009 0.002 0.001 0.007 0.003 0.005 0.008 0.003 0.001 0.001 0.003 0.002 0.003 0.003 0.005 0 0.003 0.003 0.006 0 0 0.002 0.007 0.006 0.006 0.01 0.004 0.003 0.005 0.001 0 0.012 0.008 0.027

48.758 47.055 47.028 46.638 47.089 46.937 46.793 47.2 47.017 46.863 47.237 46.794 46.795 46.664 46.757 46.872 46.538 46.573 46.831 46.969 46.707 46.83 46.83 46.969 46.619 46.762 46.588 46.894 46.849 46.683 46.937 46.974 47.032 48.341 48.289 48.509 48.406 48.559 48.388

101.004 99.086 98.976 98.793 99.001 98.771 98.65 99.224 99.137 98.877 99.222 98.806 98.606 98.181 98.418 98.621 97.815 97.9 98.332 98.588 98.13 98.422 98.644 98.77 98.44 98.784 98.184 98.797 98.459 98.596 98.614 99.077 98.861 99.883 99.721 100.126 99.766 99.977 99.699

Mn

0.039 0.07 0.039 0.055 0.086 0.022 0.079 0.049 0.029 0.045 0.069 0.019 0.043 0.024 0.036 0.023 0.002 0.011 0 0.062 0.05 0.043 0.064 0.047 0.064 0.012 0.024 0.084 0.045 0.029 0.041 0.018 0.091 0.033 0.009 0.033 0 0.02 0.014

Fe

P

Sum

o

Feldspar Analyses

Plagioclase analyses Sample

Na

Mg

A!

Si

CI

K

Ca

Ti

F

Ba

Mn

SMPG-3 plag! not small h SMPG-3 pl^ not small h SMPG-3 plag! not small h SMPG-3 plag! not small h SMPG-3 plag! not small h SMPG-3 plag! not small h SMPG-3 plag! not small h SMPG-3 plag! rim, (big h SMPG-3 plag! (big hbl3 o SMPG-3 plag! (biq hbl3 0 SMPG-^ plag! (big hbl3 0 SMPG-3 plag! (big hbl3 o SMPG-3 plag! (big hbl3 o SMPG-3 plag! (big hbl3 c SMPG-3 plag! (big hbl3 o SMPG-3 plag! (big hbl3 o SMPG-3 plag! (big hbl3 o SMPG-3 plag! (big fibl3 0 SMPG-3 plag! (big hbIS g SMPG-3 plag! rim, (big fi SMPG-3 plag! rim, (big fi SMPG-3 plag! rim, (big h SMPG-3 plag! rim, (big h SMPG-3 plag (final analysis) SMPG-3 plag (final analysis) SMPG-3 plag (final analysis) SMPG-3 plag (final analysis) SMPG-3 plag (final analysis) SMPG-3 plag (final < rim SMPG-3 plag (final rim SMPG-3 plao (final < rim SMPG-3 unknown on bid SMPG-3 unknown on bid

5.572 5.345 5.523 5.539 5.122 5.783 5.775 5.897 4.956 4.96 5.163 4.789 4.445 5.123 5.084 4.605 5.029 4.836 5.402 7.99 7.902 7.893 6.18 5.371 4.689 4,451 4.627 5.379 8.104 8.283 7.988 8.51 8.229

0,001 0 0 0 0,002 0 0 0 0,001 0.003 0,002 0 0,009 0 0 0,002 0,003 0,003 0 0 0 0 0 0,001 0 0.006 0 0,006 0.002 0 0 0 0

13,423 13,522 13,141 13,318 13,661 13,103 13,145 12,669 13,759 13,829 13,624 13,999 14.242 13,762 13,609 14,097 13.669 13,924 13.89 11,093 11,149 11.059 12.557 13,393 14,158 14.352 14.21 13,432 10,821 10,768 11,031 10,79 10.771

27.494 27.318 27,371 27.466 26,728 27,966 27,691 28,114 26.596 26,495 26,781 26,355 25.886 26.892 26.757 26.015 26.726 26,53 27.15 31.22 31.287 31.09 28.577 27.228 26.155 25.965 26,2 27.336 31.372 32,202 31.546 31.387 30.996

0 0.196 0 0.045 0 0.019 0,242 0 0 0 0 0 0 0,035 0,017 0 0,1 0 0,216 0 0.049 0 0 0 0,053 0 0 0.184 0 0 0.128 0 0

0,233 0,455 0,264 0,225 0.186 0,228 0,196 0.273 0,257 0,252 0,281 0.293 0,257 0.256 0,269 0,301 0,284 0,266 0,204 0.137 0.132 0.165 0.291 0.249 0.206 0.234 0.257 0,309 0,154 0.207 0,147 0.075 0.102

5,014 5,012 4,961 4,988 5,735 4,701 4,623 4,208 5,932 5,855 5,632 6,199 6,795 5,7 5,665 6,579 5,744 6,032 5.612 1.327 1.458 1.347 3.848 5.256 6.436 6,808 6.397 5.193 1.102 0.573 1.181 0.427 0.687

0 0.004 0.001 0.01 0 0,026 0.002 0 0 0 0 0,005 0.03 0 0 0,012 0,007 0,001 0 0,009 0,025 0.003 0.018 0.012 0.01 0.027 0,017 0 0 0 0,002 0,021 0,05

0 0.036 0.015 0.004 0 0.012 0.012 0.032 0 0 0 0 0.006 0.012 0 0 0 0 0,015 0.029 0.022 0.028 0 0 0 0 0.016 0 0 0,005 0 0 0

0.054^ 0.006 0.018 0.046

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

4.521 4.935 4.827 5.147 4,913 4.797 5,091 3,932 0.01 0,057 5,138 5,42 4.671 5,286 4,997 5,164

0 0,008 0,004 0,002 0,008 0,002 0,008 0,006 0.005 0 0 0,006 0.003 0.001 0 0.002

14,357 13,907 13.923 13,666 13,864 14,071 13,672 14,812 1,763 6.57 13.613 13,437 14.148 13.572 13.618 13.622

26.322 26.896 26.683 27.105 26.763 26.638 27.004 25.272 3.194 14.331 28.135 28,301 27.215 28.411 27.458 27.753

0 0 0.058 0.006 0 0 0.085 0.022 0 0.083 0.006 0 0 0.008 0 0.001

0.323 0.365 0.364 0.402 0.37 0.291 0.387 0.253 0,225 0.19 0.213 0.237 0.186 0.228 0.218 0.246

6,588 5.912 6.049 5.575 5.904 6.142 5.718 7.681 2.306 6.638 5.48 5.179 6.419 5.433 5.904 5.625

0 0,028 0 0,01 0,005 0 0,031 0.014 0 0.008 0.014 0 0.013 0.008 0.019 0

0 0 0,036 0.003 0 0 0 0.009 0.007 0.035 0 0.018 0 0.001 0 0.03

plag1 plagi plagi plagi plagi small plag with altered small plaq with altered small plaq Icore alt'n core near small pi alt'n core near small pi fsp inci witi lower z fsp inci witl lower z plagi local long small plagi local long small plagi local long small plagi local long small

Fe

P

0

Sum

0.038 0.042 0.052 0,052 0.016 0.045 0.017 0.026 0.028 0.023 0.05 0.04 0 0.058 0.06 0 0.023 0.048 0.052 0,028 0.047 0 0.008 0.022 0.052 0.015 0.044 0

0.001 0.008 0 0 0.019 0 0.02 0.007 0 0.01 0 0.013 0 0 0.027 0.014 0.035 0 0 0 0 0.011 0.037 0 0.009 0 0.003 0.015 0 0 0 0.005 0.007

0.138 0.171 0.136 0.122 0.185 0.151 0.073 0.159 0.16 0.158 0.131 0,18 0.178 0,181 0.199 0.168 0.157 0.169 0.167 0.107 0.029 0.081 0.156 0.202 0.187 0.202 0.205 0.16 0.017 0.008 0.047 0.068 0.097

0.005 0.003 0.004 0 0 0 0.002 0.003 0.001 0.004 0.003 0.003 0.013 0.004 0 0.007 0.005 0.006 0.014 0.002 0 0.011 0 0 0.006 0.003 0.003 0 0.004 0.011 0.008 0 0.007

47.304 47,163 46,875 47.148 46.773 47.517 47.171 47.143 46.737 46.658 46.778 46.743 46.569 47.049 46.742 46.543 46.78 46.814 47.52 48.82 48.945 48.62 47.545 47.023 46.707 46.75 46.779 47.153 48.672 49.441 49.059 48.543 48.123

99.239 99.239 98.309 98.911 98.429 99.544 98.994 98.557 98.451 98.24 98.44 98.596 98.456 99.042 98.392 98.393 98.579 98.581 100.248 100.794 100.998 100.331 99.257 98.787 98.644 98.845 98.714 99.175 100.27 101.55 101.152 99.87 99.069

0,038 0,028 0,047 0,042 0.015 0,054 0,032 0.003 0 0 0,028 0,044 0.004 0.057 0 0.045

0 0.01 0.006 0.012 0 0 0 0.023 0.034 0 0.03 0.004 0.022 0 0.006 0

0.169 0.149 0.153 0.165 0.125 0.205 0.194 0.205 0.031 0.085 0.16 0.151 0.192 0.198 0.205 0.218

0.003 0 0.006 0.001 0.006 0.01 0.003 0.006 0 0.002 0.003 0.003 0.003 0.004 0.007 0.003

47.085 47.236 47.014 47.2 47.017 47.123 47.147 46.54 6.2 24.911 48.253 48.254 47.891 48.568 47.618 47.899

99.406 99.474 99.17 99.336 98,99 99.333 99.372 98.778 13.775 52.91 101.073 101.054 100.767 101.775 100.05 100.608

o.oT^

u>

o

Feldspar Analyses

Plagioclase analyses

— — Sample

Na

SMPG-5 plagi local long small " SMPG-5 pl^l local lon^ small SMPG-5 pl^1 local long small SMPG-5 plagi local rim SMPG-5 " plagi local rim (difficui SMPG-5 plaqi local rim SMPG-5 plagi local bigger, stui SMPG-5 plaqi local biqqer, stuI SMPG-5 plaqi local bigger, stul SMPG-5 plagi local zone in big SMPG-5 plaqi local zone in biq SMPG-5 plaqi local biqqer, stul SMPG-5 plagi local bigger, stul SMPG-5 plaqi local bigger, stul SMPG-5 plagi local bigger, stul SMPG-5 round mineral with mo SMPG-5 hbl? or pla( plag! not h SMPG-5 hbl? or pla! plag! not h SMPG-5 hbl? or pla< plag! not h SMPG-5 hbl? or pla plag! not h' SMPG-5 hbl? or plai plaq! not h SMPG-5 hbl? or pla( plaq! not h SMPG-5 hbl? or pla plag! not h SMPG-5 hbl? or pla( plag! not hi SMPG-5 hbl? or pla( plag! not h SMPG-5 plag rim SMPG-5 plag rim SMPG-5 plag! (plag? (or hbl)) SMPG-5 plag! (plaq? (or hbl)) SMPG-5 plaq! (plaq? (or hbl)) SMPG-5 plag! (plag? (or hbl)) SMPG-5 glag! (plag? (or hbl)) SMPG-5 plaq! (plaq? (or hbl)) SMPG-5 plag! (plag? (or hbl)) SMPG-5 plag! (plaq? (or hbl)) SMPG-5 plaq! (plaq rim? SMPG-5 plag! (plag rim remnar SMPG-5 plag! (possible hbl or s SMPG-5 plaq! not hjouter rim SMPG-5 plag! not hbl? SMPG-5 plag! not hbl? SMPG-5 plag! not hbl? SMPG-5 plag! not hbl? SMPG-5 plag! not hbl? SMPG-5 plaq! not hbl?

Mg

Al

K

CI

SI

4.781 6.719 7.228 8.337 "7.712 5.406 5.05 4.958 5.035 5.002 4.984 4.931 4.294 4.78 5.054 5.363 4.98 5.445 5.356 5.266 5.123 5.103 4.921 5.31 7.837 8.743 0.132 5.283 5.062 5.174 4.979 4.905 4.801 5.013 5.036 8.035 8.017 7.52 8.472 5.199 5.146 5.026 4.654 4.873 5.672

0 " o.oi 0.001 0 0 0 0 0 0.004 0.006 0.011 0 0.006 0.005 0.004 0 0.004 0 0 0 0.002 0 0.006 0.003 0 0 11.164 0 0 0 0 0 0 o.odr 0 0.002 0 0.005 0 0 0.006 0.01 0.009 0 0.003

13.835 11.758 " 12.01 11.262 11.725 13.686 13.548 13.734 13.535 13.713 13.66 13.813 14.378 13.844 13.673 13.504 13.75 13.409 13.498 13.441 13.802 13.725 13.984 13.693 11.677 10.999 7.68 13.576 13.77 13.632 13.929 13.886 13.848 13.477 13.91 11.794 11.059 11.681 11.037 13.6 13.524 13.632 13.938 13.672 13.193

27.27 '"33.951 32.55 M.197 33.219 28.638 27.768 27.92 27.852 27.796 27.909 27.701 26.413 27.509 27.872 28.355 27.746 28.592 28.325 28.144 27.793 27.963 27.561 28.193 34.079 34.278 19.597 28.231 27.869 28.169 28.026 27.632 27.498 27.672 27.562 34.277 34.938 33.149 34.402 28.106 28.125 27.703 26.942 27.161 29.111

0.002 o.oi 9 0.012 "0.009 0.005 0.001 0.011 0 0 0.006 0.004 0.001 0 0.003 0.003 0 0.019 0.006 0.007 0 0.006 0.009 0 0.006 0.008 0 0.175 0.008 0.003 0.004 0 0 0.007 0 0.009 0.006 0.001 0.002 0.007 0 0.024 0.002 0.003 0.009 0

7.948 6.487 8.156 7.731

0.042 0 0.006 0.001

11.497 12.396 11.428 11.736

34.292 30.371 35.675 32.88

0.057 0.001 0.017 0.003

Ca

0.239

Ti

F

0.179 0.207 0.186 0.217 0.217 0.242 0.24 0.262 0.273 0.232 0.163 0.251 0.2 0.228 0.244 0.329 0.305 0.236 0.178 0.204 0.161 0.191 0.11 0.115 6.044 0.219 0.246 0.275 0.24 0.194 0.138 0.162 0.15 0.092 0.092 0.208 0.111 0.197 0.231 0.225 0.171 0.234 0.244

6.193 1.061 2.293 0.424 1.503 5.217 5.713 5.819 5.839 5.879 5.864 6 7.147 6.149 5.753 5.328 5.89 5.105 5.344 5.496 5.909 5.845 6.154 5.566 1.177 0.279 0.001 5.476 5.749 5.508 5.893 6.073 6.249 5.892 6.11 1.205 0.17 1.799 0.297 5.38 5.559 5.859 6.443 5.997 4.769

0.005 0.008 o' 0.024 0.009 0 0.004 0.024 0.002 0.001 0.009 0 0.023 0.03 0 0.012 0.011 0.001 0 0.003 0.018 0.015 0.029 0.001 0.013 0.016 2.365 0 0 0 0 0 0.002 0 0.012 0.014 0 0.024 0.02 0 0 0 0.029 0.014 0.022

0.112 0.465 0.078 0.22

0.192 3.094 0.193 1.819

0.004 0.007 0.04 0.03

'6.528

Ba

Mn

Fe

o

P

Sum

0 "o 0 0 0.008 0 0.029 0 0 0.016 0 0.006 0.018 0 0 0.035 0 0 0 0.011 0 0 0.009 0 0.901 0 0 0 0 0 0.012 0 0.021 0 0.03 0.003 0 0 0 0.016 0 0 0

o.oi 9" 0.079 o' 6.053 0 0.068 0.006 0.063 0.019 0.004 0.046 0 0.044 0.053 0.03 0.026 0 0.045 0.039 0.019 0.017 0.035 0 0.031 0.037 0.045 0 0.03 0.084 0.018 0.078 0.023 0.016 0.084 0.044 0.02 0.052 0.026 0.056 0.028 0.075 0.031 0.035 0.095 0.037

0.006 0.008 0.003 6.024 0.001 0 0 0.01 0 0 0 0 0.014 0.011 0.002 0.002 0.016 0 0.008 0 0 0 0.001 0.019 0 0.004 0.027 0.002 0.009 0 0.018 0 0.014 0 0.001 0 0 0.012 0 0 0 0.007 0 0.007 0.017

0157 0.118 0.086 0.06 0.124 0.171 0.184 0.142 0.144 0186 0.187 0.149 0.133 0.156 0.112 0.161 0.147 0.166 0.151 0.156 0.181 0.119 0.146 0.143 0.058 0 8.301 0.18 0.13 0.168 0.1 0.168 0.122 0.156 0.138 0.084 0.005 0.069 0.007 0.175 0.179 0.177 0.21 0.194 0.158

0.008 0.003 0^005^ 0.022 0.002 0.007 0.001 0.002 0.002 0.002 0.001 0.007 0.007 0.009 0 0 0 0.004 0.005 0.008 0 0.004 0.001 0 0.012 0.019 0.003 0.002 0.01 0 0.003 0.007 0 0.008 0.003 0.016 0.01 0.014 0.008 0.005 0.006 0.005 0.008 0.001 0.005

47.621 100.136 52.068 ~ "106^33 5i.266 105.633 52.165 106.784 5i.64 106" 126 48.872 102.283 47.825 100.335 48.192 101.106 47.951 100.652 48.066 100.923 48.15 101.098 48.056 100.906 47.336 99.958 47.911 100.717 48.051 100.772 48.412 101.391 48.032 100.839 48.559 101.696 48.391 101.429 48.154 100.923 48.185 101.214 48.269 101.302 48.106 101.07 48.46 101.616 52.477 107.494 52.054 106.552 41.757 98.147 48.365 101.372 48.168 101.1 48.324 101.272 48.499 101.765 100.951 48.063 47.881 100.588 47.709 100.174 48.052 101.048 108.441 52.896 52.538 106.912 51.596 106.108 52.131 106.548 48.174 100.864 48.199 101.074 47.889 100.582 47.417 99.859 47.32 99.577 48.906 102.137

0.097 0 0 0

0.686 0.092 0.001

0.031 0.027 0.016 0

0.269 0.237 0.296 0.197

0 0.003 0 0.007

52.227 49.377 53.87 51.445

0 0

1 SMPW-1 SMPW-1a SMPW-1a SMPW-1a

plaq rim to acti unl^nown mineral phas Kspar? Kspar-Ab i plaqi outside pla

106.768 103.149 109.868 106.068

U) g

Feldspar Analyses

Plagioclase analyses Sample

Na

Mg

Si

A!

CI

K

Ti

Ca

F

Ba

SMFW-la SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-1a

plag1 outside pla plyl outside pla plajl rim itself pla^l outer zone plag1 outer zone outer zone plafll plagi outer zone plag1 outer zone plagi outer zone plagi transition plagi zone 2 plagi zone 2 plagi zone 2 plagi zone 3 plagi zone 3 plagi transition plagi core plagi core plagi core plagi core plagi core plagi core plagi core plag inner zone unknown, i core replac unknown, [ core replac unknown, |core replac unknown, icore replac unknown. core replac unknown. core replac unknown. core replac unknown. core replac unknown, j core replac unknown. core replac unknown, core replac

6.988 7.32 5.722 5.444 4.96 4.643 8.269 4.557 4.093 3.309 4.572 4.276 3.989 4,526 4.41 3.721 4.21 4.169 4.203 4.218 4,639 4.289 4.616 3.085 6.83 6.525 6,252 4.149 6.043 6.317 7.012 6,266 6,501 6.579 6.167

0.003 0.005 0.001 0.007 0.006 0.012 0 0.014 0.01 0,022 0,014 0.011 0.015 0.008 0.007 0,007 0,012 0,003 0,005 0,007 0,017 0,011 0,004 0,125 0,003 0,006 0,005 0,022 0,011 0,001 0.005 0 0.004 0 0.004

12.393 12.394 13.191 13.447 13.87 14.161 11.408 14.432 14.766 14.726 14.238 14.502 15,002 14,274 14.355 15.117 14,609 14,855 14,596 14,615 14,105 14,648 14.218 12.207 12.149 12.141 12.278 12.148 12.43 12,42 11,864 12,521 12.037 12.243 12.573

32.378 32.425 29.715 28.394 27.861 27.175 34.483 26.914 26.227 24.068 27,049 26,487 26,328 26,9 26,75 25,654 26,327 26,642 26.41 26.467 27.147 27,149 27.144 32,113 31,499 31,148 30,676 27,018 29,24 30,503 31.859 30.759 31,287 31,402 31,361

0,093 0^006 0.028 0 0 0 0 0 0.003 0.01 0.005 0.002 0.003 0 0 0.003 0 0 0 0.003 0 0 0.002 0.019 0 0.004 0.001 0 0 0 0.002 0.004 0 0.004 0.005

0.414 0.092 0.611 0.54 0.449 0.301 0.305 0.347 0.278 0.206 0.359 0.313 0.247 0.325 0.311 0.249 0.27 0.254 0.237 0.211 0.334 0.291 0.323 0,576 0,73 1,001 0,969 1,159 0.565 0.694 0.568 0.851 1.044 0.875 0.429

2.422 2.466 4.084 4.802 5.453 6.156 0.669 6.4^ 7.234 9,965 6.372 6.82 7.338 6.411 6.66 7.775 6.942 7.145 7.031 7.009 6,232 6.881 6.346 2.094 2.621 2.558 3,057 4.161 3.713 3.138 2.313 3.103 2.612 2.693 3.078

0 0 0,003 0 0^015 0.01 0,009 0 0,03 0,011 0.046 0.017 0.017 0 0.012 0.024 0.029 0.013 0 0 0 0.007 0.006 0,04 0,002 0,002 0,002 0,015 0,035 0 0,004 0,004 0.027 0.02 0

0 0 0 0 0.003 0 0 0 0 0.004 0 0,008 0 0 0,01 0,009 0 0,04 0,03 0 0 0 0 0,002 0 0.009 0 0 0 0

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Kspar interstit Kspar rim to pig Ab rim of plagi Ab rim of plagi Ab rim? of plagi plagi in plagi in plagi in plagi in plagi core plagi core plagi In plagi In plagi in

5.516 5.486 5.473 5.482 5,299 5.226 5.365 5.186 5.365 4.985 4.976 5,107 5,188 4,88

0.009 0.009 0.012 0.003 0.005 0,009 0,011 0,014 0,008 0.007 0.015 0.013 0.011 0.022

12.961 12.818 13.173 13.434 13,579 13.839 14.842 15.719 15.764 16.81 16.285 15.764 14.933 14,597

28,567 28,353 28,247 27,991 28.084 27.62 27,208 26.029 26,04 25,006 25.162 25.618 26.376 26.746

0.021 0.012 0.009 0 0.009 0.017 0.009 0.008 0,012 0,007 0,019 0,007 0 0,024

2.837 2.867 2.527 2.592 2.655 2.782 1.815 0.965 0.636 0.569 0.57 0.635 0,974 1,768

1.388 1.436 1.498 1.599 1,715 1.78 2.312 3,119 3,338 3,551 3,813 3,892 3,646 3,175

0.017 0.022 0.01 0 0.01 0 0.012 0 0.012 0,047 0,005 0.037 0,015 0,034

0.153 0.025 0.093 0.119 0 0 0 0 0.059 0 0.085 0.051 0 0.051

0 0 0 - QI

Fe

Mn

0,341 0.027 0.559 0.484 0.354 0.189 0.002 0.256 0.178 0.094 0.179 0.195 0.113 0.233 0.194 0.145 0.21 0.151 0.134 0.161 0.22 0.143 0.302 0,582 0,571 0,812 0,614 0,548 0,724 0,733 0.463 0.967 0.478 0.419 0.416

P

Sum

0

0.009 0.001 0.013 0 0 0 0 0.011 0.018 0.008 0 0.022 0.015 0.019 0 0.016 0.01 0.014 0 0.002 0.007 0.021 0,014 0 0 0 0,007 0 0 0 0,009 0 0 0.015 0.006

0,143 0,026 0,221 0,266 0,272 0,274 0.116 0,3 0.338 0.329 0.256 0.294 0.333 0.262 0.254 0.291 0.319 0.309 0,303 0,312 0,316 0,279 0,249 1,181 0.22 0.213 0.238 0.255 0.226 0.189 0.181 0.213 0.23 0.232 0.199

om2 0,005 0,005 0 0,0^ 0 0 0.002 0.003 0.005 0.004 0.005 0 0.006 0.002 0,005 0,002 0.005 0.003 0.003 0.002 0 0.003 0 0 0 0.008 0.004 0 0.004 0 0.008 0 0 0

51.482 51.536 49.474 48.367 48.207 47.804 52.679 47.851 47.536 45.826 47.828 47.488 47.84 47,665 47,61 47,254 47.428 48,047 47,499 47,579 47,777 48,372 47,896 49,985 50,396 49,942 49.62 45,095 48,249 49,536 50,442 49,96 50,012 50,342 50,484

106.668 106.304 103.627 101.751 101.45 100.725 107,941 101,109 100,713 98,584 100,923 100,433 101,24 100,63 100,568 100,262 100,377 101,606 100,422 100,598 100,806 102,091 101.162 102,037 105.021 104.351 103.728 94.575 101.237 103.533 104,731 104,658 104,233 104,825 104,723

0.007 0.01 0.032 0 0.025 0.001 0 0 0 0.026 0 0,022 0,017 0.012

0.123 0.164 0.154 0.154 0.168 0.188 0.159 0,24 0,17 0,208 0,247 0,236 0,25 0,279

0.002 0.002 0 0 0.011 0.009 0 0.007 0 0.001 0,01 0 0.002 0.013

47.119 46.836 46.947 46.914 47.227 46.945 47.423 46.971 47,054 46,815 46,581 46.755 46.892 46.895

98,72 98.04 98.175 98.288 98.787 98.416 99.156 98.258 98.458 98.032 97.768 98,137 98,304 98,496

o L/1

Feldspar Analyses

Plagioclase analyses Sample

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Na

plag1 close2rim plagi rim remnan Ab rim of plagi Ab rim of plagi unkn AIKS Ab-Ksp? unkn SiAlK 'Ab-Ksp? ap1 core BAD? ap1 rim BAD? apcr, blohbl big apin, blohbl big apnm, blohbl big ksparout plagi ab rim of plagi plagi rim plagi rim plagi in plagi in plagi in plagi in plagi in plagi in plagi in plagi In plagi in plagi in plagi in plagi In plagi core plagi core plagi core plagi in plagi in plagi in plagi In plagi in plagi in plagi rim plagi loZ band plagi loZ band plagi rim plagi rim plagi rim ab rim of plagi ab rim of plagi ab out of plagi ab out of plagi kspar out plagi tit rim tit in tit core

Mg

4.865 4.334 4.266 4.321 5.68 5.293 4.289 4.273 3.389 3.661 3.655 4.884 4.785 4.903 4.817 4.86 4.725 4.863 4.972 5.024 4.332 4.227 4.175 4.007 4.092 4.128 4.111 3.933 3.925 4.018 3.99 3.96 3.988 4.212 4.645 4.97 5.326 5.243 5.301 5.35 5.38 5.524 5.511 5.132 5.269 5.202 4.952 3.575 3.471 3.364

Al

0.02 0.021 0.021 0.018 0.043 ^ 0.025 0.4 0.026 1.34 1.023 1.094 0.017 0.012 0.027 0.02 0.016 0.014 0.005 0.015 0,012 0.006 0.021 0.027 0.017 0.028 0.02 0.016 0.007 0.01 0.008 0.004 0.003 0.002 0.014 0.004 0.009 0.002 0.002 0.011 0.007 0.006 0.008 0.011 0.009 0.014 0.002 0.003 1.129 1.177 1.249

Si

14.207 12.701 12.379 12.187 14.229 11.276 8.605 10.239 7.869 8.402 8.587 10.829 10,747 11.066 11.254 11.376 11.886 12,298 13.529 14.548 15.679 16.074 16.478 17.233 15.794 15.231 15.715 15,564 16.443 16.079 16.3 16.254 15.889 15.44 14.64 13.985 14.483 14.567 14.141 13.59 12.85 12.602 12.816 12.556 12.025 11.605 11.27 9,071 8,99 9,055

CI

27,078 28,516 28.637 28.444 26.658 30.025 23.525 24.877 21.698 22.722 23.451 30,329 30,391 30,205 29,63 29,585 28,745 28,395 27,131 26,041 25,106 25,183 24,81 23,893 24,877 25,084 25,053 23,585 24,92 24,673 24.923 24.584 24.57 25.192 26.434 26.624 26.99 27,361 27,371 27,784 28,158 28,243 28,4 28,294 28,634 29,112 29,384 22.412 22.449 22,664

K

0,007 0,003 0,008 0,011 0,026 0,005 0.018 0.045 0.036 0.027 0.024 0.022 0.009 0.013 0.008 0 0.024 0 0 0.021 0.005 0.007 0 0,02 0 0 0 0,016 0 0,009 0,003 0,006 0 0.01 0.003 0 0.005 0.01 0 0.011 0.004 0.003 0 0,014 0,013 0,01 0,017 0.013 0,005 0.011

Ca

2,122 3,292 3,872 4,271 2,527 4,694 3.904 4.191 3.755 4.053 4.124 4.03 3.829 3.261 4.102 3.744 3.942 3.229 0.996 0.616 0.633 0.722 0.735 0.758 0.755 0.817 0.751 0.635 0.6 0.523 0.482 0.414 0.493 0.412 0.455 0.482 0.526 0.666 0.79 0.983 1.091 1.319 1.64 2.05 2.645 3.227 4,197 1,983 1.92 2,173

Ti

2,913^ 2,125 1.904 i.63 0.416 ^ 0.343 6.26 5.645 5.705 5.148 4.491 1.489 1.625 1.921 1.745 1.86 2.339 2.665 4.137 4.864 5.453 5.503 5.535 5.328 5.978 6.163 6.027 7.201 5.992 6.322 6.306 6.254 6.548 6.308 5.892 5.343 4.568 4.382 4.185 4.177 4.104 3.911 3.417 3.355 2.887 2.24 1.673 6.857 6.981 6.62

F

0.027 0.01 0 0 0.107 0.078 0.685 0.084 0.744 0.752 0.732 0.01 0 0 0 0.007 0.01 0 0.025 0.029 0.002 0.012 0 0,015 0,022 0,002 0 0,015 0.012 0.005 0 0,02 0,027 0.017 0 0 0.002 0 0.02 0.002 0 0 0 0.022 0.002 0.005 0 1.743 1,584 1,817

Ba

0 0 0.043 0.052 0.058 0.043 0.481 0.459 0.477 0.183 0.251 0 0.095 0.112 0.06 0.077 0.043 0.017 0.077 0.017 0.043 0.052 0.026 0 0 0.078 0.121 0.14 0.069 0.035 0.017 0.061 0.052 0 0 0.086 0 0 0 0 0 0 0 0 0 0.034 0 0.126 0.025 0.008

Mn

Fe

0 0.019 0 0.026 0 0.013 0.017 0.02 0.051 0,059 0.11 0 0 0.007 0.031 0 0.029 0 0.01 0.013 0.003 0 0 0 0.031 0 0,022 0,019 0 0 0 0 0 0,035 0 0,003 0 0.003 0 0.009 0 0.01 0 0 0 0 0,001 0,175 0.152 0.116

o

P

0.175 0.242 0,204 0.239 2.225 0.214 1.8 0.21 2.611 2.103 2.425 0.152 0.154 0.164 0.2 0.182 0.212 0.186 0.24 0.23 0.282 0.307 0.271 0.319 0.264 0.275 0.227 0.247 0,342 0,274 0,294 0,279 0.27 0.274 0.266 0.235 0.27 0.242 0.202 0.218 0.257 0.251 0.259 0.252 0.215 0.183 0.128 6.47 6,574 6.124

0 0.003 0.019 0 0.007 0.006 2.928 2.995 2.594 2.431 2.03 0.017 0.009 0.006 0 0.01 0.004 0.003 0.004 0.008 0.01 0.012 0.002 0.01 0.122 0.147 0.181 1.042 0.006 0 0.007 0.008 0.003 0.017 0 0.006 0.018 0.017 0.017 0.006 0.025 0 0,003 0,01 0 0,015 0 0,009 0,013 0,009

Sum

46,859 46,917 46,754 46,341 46.407 47.302 44.065 45.852 41.229 42.372 42.712 47.385 47.305 47,422 47,034 47,075 46,775 46,761 46.604 46.522 46,446 46.908 46.825 46.349 46.634 46.442 46.778 46.463 46.991 46.513 46.987 46.506 46.309 46.634 47.28 46.78 47.521 47.933 47.54 47.552 47.354 47.222 47.461 47.053 46.917 46.916 46,788 41.759 41,727 41,964

98.273 98.183 98.107 97.54 98.383 99.317 96.977 98.916 91.498 92.936 93,686 99.164 98.961 99,107 98.901 98.792 98.748 98.422 97.74 97.945 98 99.028 98.884 97.949 98.597 98.387 99.002 98.867 99.31 98.459 99.313 98.349 98.151 98.565 99.619 98.523 99.711 100.426 99.578 99.689 99.229 99.093 99.518 98.747 98.621 98.551 98.413 95.322 95.068 95.174

U) O OS

Feldspar Analyses

Plagioclase analyses Sample

Na

Mg

Al

Si

CI

K

Ca

^ Tl

F

Ba

^ Mn

Fe

o

P

Sum

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

tit in tit rim mt contact mt core mt in mt rim plagi cor midi plaq1 cor hil rm plagi cor lo2 rm plagi cor lo2 plagi cormid2 plagi cor hi2 ab repi plagi cr biol rim bio1 rim biol rim cpxl rim Ab? apl rim ap2 rim

3.414 3481 3.834 4.117 4.5 4.767 6.142 6.195 6.243 4.345 6.649 6,749 6.644 1.332 6.044 4.607 7.531 6.82 7.243

1.33 1.38^ 1.292 1.28 1.192 1.16 0 0 0.009 0.001 0.007 0.006 0.001 1.215 0.106 0.159 0.003 0.061 0.008

8.931 9.063 9.389 r 9.679 10.027 10.262 13.44 13.317 13.072 12.652 13.456 13.327 13.419 11.844 12.207 12.078 12.055 12.09 12.985

23.044 23.313 24.07 24.72 25.766 26.324 29.193 28.762 28.474 28.552 29.048 29.292 29.232 16.538 28.842 25.204 32.258 32.41 32.769

0.013 0.017 0.019 0.019 0.015 0.001 0.012 0 0.003 0.004 0 0.003 0 0.012 0 0.011 0.006 0.014 0

2.194 2.208 2.203 2.169 2.153 2.076 1.774 1.447 0.796 4.626 0.936 0.702 0.913 1.395 0.097 0.145 2.12 1.906 0.49

6.518 6.455 5.884 5.489 4.951 4.62 2.444 2.573 2.677 1.425 2.742 2.722 2.727 0.044 0.038 0.075 0.193 0.265 0.299

1.702 1.815 1.326 0.909 0.802 0.789 0.014 0 0.037 0 0.037 0 0.009 0.29 0.069 0.018 0 0.002 0

0.067 0 0.051 0 0.017 0.085 0.098 0 0 0 0 0 0.025 0.237 0 0 0 0 0

o.ir 0.155 0.132 0.143 0.114 0.091 0.003 0 0 0.01 0 0 0.016 0.071 0.038 0 0.031 0.021 0.004

6.017 5.649 4.834 4.274 3.359 2.831 0.196 0.221 0.168 0.129 0.175 0.244 0.2 2.345 0.267 0.294 0.223 0.292 0.383

0.008 r 0.001 0 0 0.005 0 0.012 0.003 0 0 0.003 0 0 0.004 0.002 0.001 0 0.008 0

42.185 42.646 43.044 43.555 44.572 45.141 48.731 48.163 47.551 46.853 48.714 48.881 48.888 31.734 46.065 41.323 50.681 50.689 51.744

95.533 96.183 96.078 96.354 97.473 98.147 102.059 100.681 99.03 98.597 101.667 101.926 102.074 67.061 93.775 83.915 105.101 104.578 105.925

SMPV-1 SMPV-1 SMPV-1 SMPV-1 SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la SMPV-la

unknown black1 arei unknown blackl are: unknown black 1 are! unknown blackl arei unkn AISIC Ab? unkn AlSiC Ab? Kspar rim t Ab-Kspar? unkn AlSiC Ab? unkn AlSiO Ab? Ab? Margin of AbQ int Ab? Margin of AbQ int Ab? Inside AbQ interg Ab? Inside AbQ interg Ab? Inside AbQ interg Ab? Inside AbQ interg Ab? Inside AbQ interg Ab? Inside AbQ interg Ab? Inside AbQ interg Ab inside AbQ intergrc Ab end Ap Ab? Ab end Ap Ab? Ab in Kspar alt'n Ab rim In Kspar alt'n Ab matrix Ab matrix Ab matrix Ab matrix Ab matrix Ab matrix Ab matrix rim to Q

7.751 6.961 8.665 8.254 8.683 8.305 6.812 8.62 8.052 8.603 8.648 8.696 3.741 8.647 8.729 8.528 8.69 8.646 8.719 9,006 8.616 8,778 8.032 8.67 8.869 8.91 8.622 8.402 8.611 8.453

0.017 0.01 0.001 0.002 0 0.006 0.006 0.004 0.004 0.004 0 0.009 0.001 0 0 0.002 0 0.003 0 0.001 0 0.167 0.008 0.002 0 0.01 0.001 0.002 0 0

11.528 11.195 11.509 11.858 10.874 11.159 10.748 11.069 10.695 10.662 11.054 11.185 11.412 11.13 10.905 10.797 11.075 11 10.876 10.762 11.217 10.324 11.156 10.784 10.738 11.006

33.327 32.273 33.123 33.422 31.825 31.758 32.119 32.934 33.1 32.097 32.656 32.376 34.067 32.984 32.5 32.843 32.4 32.338 32.118 32.905 32.812 31.803 33.451 32.572 32.781 33.11 32.383 32.437 32.337 32.405

0.002 0.001 0.006 0.028 0 0 0.016 0 0.009 0 0.015 0.014 0.002 0.008 0 0.009 0.014 0 0 0 0.016 0.001 0 0.01 0.009 0.003 0.015 0.017 0.028 0.024

0.083 1.191 0.032 0.094 0.106 0.122 2.414 0.088 0.691 0.086 0.113 0.076 0.087 0.104 0.131 0.102 0.102 0.118 0.063 0.126 0.168 0.143 0.111 0.06 0.137 0.138 0.227 0.222 0.115 0.19

0.291 0.388 0.19 0.433 0.452 0.885 0.185 0.328 0.306 0.396 0.412 0.138 0.137 0.379 0.331 0.11 0.449 0.453 0.416 0.18 0.363 0.297 0.322 0.257 0.126 0.115 0.437 0.449 0.374 0.379

0.027 0 0 0.027 0.009 0.007 0.036 0.018 0.016 0.073 0 0.022 0 0.024 0.02 0 0.033 0.009 0 0.002 0 0.018 0 0 0 0 0.009 0.002 0 0.022

0 0.024 0.048 0.016 0 0 0.016 0.114 0 0 0.024 0 0 0 0.114 0.089 0 0.073 0 0.073 0.016 0 0.033 0 0 0.024 0.106 0 0.041 0

0 0.01 0.014 0.011 0 0 0.01 0 0.009 0 0.011 0.017 0 0.04 0.026 0 0 0.01 0 0 0.003 0.01 0 0 0 0 0.007 0.01 0 0

0.122 1.076 0.12 0.054 0.022 0.024 0.037 0.033 0.041 0.104 0.037 0.035 0.022 0 0.01 0.006 0 0.031 0 0.003 0.042 0.019 0.01 0 0.004 0.022 0 0.024 0.027 0

0.009 0.009 0.011 0.01 0.005 0 0.003 0 0.005 0.016 0 0 0.006 0.002 0 0.013 0 0 0.011 0.017 0.009 0.006 0 0 0 0 0 0 0 0.007

51.131 49.869 51.107 51.73 49.174 49.395 49.13 50.495 50.323 49.325 50.237 49.967 50.354 50.691 49.903 50.037 50.01 49.831 49.497 50.29 50.555 48.758 50.978 49.836 50.065 50.692 50.04 50.125 49.786 49.875

104.288 103.007 104.826 105.939 101.15 101.661 101.532 103.703 103.251 101.366 103.207 102.535 99.829 104.009 102.669 102.536 102.773 102.512 101.7 103.365 103.817 100.324 104.101 102.191 102.729 104.03 103.047 102.943 102.324 102,377

11^ 11.253 11.005 11.022

o

Feldspar Analyses

Plagioclase analyses Sample SMPV-1a SMPV-la SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-la SMPV-1a SMPV-la SMPV-la

Ab xl rim to Kspar alt'n Ab xl Ab xl Ab xl Ab xl Ab xl Ab xl rim to intergrowtl Ab rim to Kspar alt'n o Ab near rim of AbQ alt Ab within AbQ Ab within AbQ near Ac

Na 8.527 8.674 8.466 8.671 7.833 8.642 8.433 8.728 8.809 8.928 8.687

0 0 0.003 0 0.005 0.018 0.125 0.003 0 0.001 0

11.039 10.419 10.587 10.896 9.666 10.986 11.019 10.672 10.993 10.731 10.645

32.547 31.429 32.951 32.829j 33.745I 32.102 32.535j 31.949 32.645 32.85 32.505

0 0 0.042 0.016 0 0 0 0 0.004 0 0.001

0.126 0.105 0.115 0.133 0.104 0.045 0.048 0.197 0.091 0.106 0.151

0.209 0.132 0.087 0.196 0.095 0.614 0.315 0.805 0.265 0.048 0.25

0.002 0 0 0.007 0 0.007 0.02 0.016 0.018 0.011

0 0.055 0.081 0.154 0.041 0 0 0 0.032 0 0

SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b

plagi traverse plag1 traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plagi traverse plag rim plag interior 45-plag?, plagi 46-plag?, plagi 47-plag?, plagi 48-plag?, plagi 49-plag?, plagi 50-plag?, plagi 51-plag?, plagi 52-plag?, plagi 53-plag?, plagi 54-plaq?, plaqi 55-plag?, plagi 57-Ab?, plaqi near rin 58-plag rim?, plagi 59-plag rim?, plagi 60-plag mid?, plagi 61-plag mid?, plagi 62-plag mid?, plagi 63-plag core?, plaqi 64-plag core?, plagi

6.388 4.363 4.652 4.16 4.829 4.596 4.644 4.62 4.515 4.541 4.889 5.072 4.854 5.044 4.651 5.35 7.941 7.796 4.711 4.94 b.d. 4.189 b.d. 4.707 b.d. 4.171 b.d. 3.94 b.d. 5.504 b.d. 3.988 b.d. 5.612 b.d. 4.207 b.d. 4.478 b.d. 5.503 b.d. 0.019 b.d. 4.327 b.d. 4.072 b.d. 4.274 b.d. 3.57 b.d. 5.982 b.d. 4.542 b.d. 4.244 b.d.

0.003 0.01 0 0.012 0.008 0.012 0.006 0.006 0.003 0.015 0.006 0.001 0.008 0.006 0.009 0.002 0.005 0.008 0

12.397 14.659 14.129 14.584 13.792 14.031 13.856 13.98 14.146 14.072 13.709 13.371 13.748 13.688 14.201 13.798 11.181 11.451 14.132 10.123 11.098 10.276 10.93 11.253 9.632 11.237 9.327 10.968 10.62 9.625 8.653 10.89 11.078 10.89 11.709 9.263 10.522 10.758

30.659 27.372 27.479 26.794 27.865 27.773 27.587 27.231 27.284 27.307 27.758 28.435 27.676 27.961 27.491 28.656 33.579 34.818 27.557 20.941 b.d. 19.665 b.d. 20.803 19.939 b.d. 19.64 b.d. 21.585 b.d. 19.583 b.d. 21.987 b.d. 19.857 b.d. 20.225 b.d. 21.417 b.d. 23.809 b.d. 20.026 b.d. 19,783 b.d. 19.957 b.d. 19.121 b.d. 21.791 b.d. 20.303 b.d. 20.118 b.d.

0 0 0.01 0.006 0 0.016 0 0.009 0 0 0.002 0 0.004 0.005 0 0.003 0.009 0 0.012

0.226 0.164 0.287 0.325 0.464 0.462 0.487 0.442 0.418 0.453 0.54 0.597 0.376 0.214 0.216 0.133 0.224 0.288 0.235 0.155 0.14 0.159 0.266 0.235

3.331 6.843 6.22 7.03 5.855 6.176 6.043 6.167 6.395 6.261 5.73 5.156 5.821 5.762 6.4 5.548 0.832 0.832 6.26 2.017 b.d. 3.302 b.d. 2.26 b.d. 3.019 b.d. 3.261 b.d. 1.426 b.d. 3.325 b.d. 1.112 b.d. 3.068 b.d. 2.805 b.d. 1.527 b.d. 3.232 b.d. 2.924 b.d. 3.153 b.d. 2.983 b.d. 3.789 b.d. 1.199 b.d. 2.656 b.d. 2.859 b.d.

0.015 0.014 0 0.008 0.024 0 0.006 0 0.005 0.041 0.011 0.025 0 0.006 0.017 0.04 0 0 0.004

0 0 0.003 0 0 0 0.005 0 0 0 0 0.002 0.004 0 0 0.028 0.019 0 0.04

Mg

A!

Si

CI

K

0.048

Ti

ta

b.d. 0.212 0.038 0.23 0.184 0.102 0.28 0.085 0.18 0.241 0.166 0.028 0.317 0.282

F

b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

Ba

Mn

0.005 0.066 0.053 0.063 0.035 0.055 0.024 0.004 0.043 0.052 0.07 0.061 0.044 0.067 0.047 0.046 0 0.007 0.043 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

0 0.009 0 0 0.007 0 0 0.023 0.003 0 0.001

Fe 0.017 2.456 0.065 0.105 0.067 0.042 0.979 0.043 0.005 0 0

0 0.01 0 0.014 0 0.009 0 0.008 0 0 0.032

49.985 48.865 49.941 50.199 49.844 49.646 50.308 49.338 50.161 50.134 49.706

Sum 102.452 102.154 102.338 103.213 101.414 102.104 103.769 101.786 103.024 102.816 101.989

0 0.006 0 0 0 0.011 0 0.016 0.017 0.006 0 0.017 0 0 0 0.005 0.004 0.008 0.019

0.191 0.245 0.261 0.22 0.197 0.245 0.24 0.192 0.222 0.212 0.215 0.223 0.278 0.275 0.267 0.294 0.103 0.233 0.273 0.081 b.d. 0.062 b.d. b.d. b.d. 0.064 b.d. b.d. 0.063 b.d. 0.085 b.d. 0.062 b.d. 0.057 b.d. b.d. 0.095 b.d. 0.089 b.d. 0.061 b.d. 0.069 b.d. b.d. 0.065 b.d. 0.069 b.d.

0.001 0.005 0.003 0 0.002 0 0.002 0 0 0.001 0.003 0.003 0.002 0.006 0.008 0.006 0 0.004 0.009

49.624 48.608 48.119 47.901 48.21 48.368 47.962 47.682 47.954 47.907 48 48.331 47.94 48.231 48.278 49.151 51.376 53.037 48.254 61.708 61.527 61.719 61.601 61.595 61.824 61.565 61.905 61.53 61.608 61.588 63.999 61.62 61.505 61.575 61.56 61.705 61.577 61.629

102.84 102.355 101.216 101.103 101.281 101.745 100.862 100.349 101.002 100.868 100.933 101.294 100.755 101.265 101.585 103.06 105.273 108.482 101.549 103.383 101.116 102.725 101.618 101.537 104.156 101.494 104.639 100.834 101.477 103.4 91.257 102.013 101.426 101.349 101.18 102.566 102.173 101.711

b.d. b.d. b.d. b.d.

b.d.

b.d.

P

0

0.015

u>

o 00

Feldspar Analyses

Plagioclase analyses Sample

Mg

Na

Al

Si

K

CI

Ca

^ Ti

SMNA-2b 65-plag core?, plagi SMNA-2b 66-plag core?, plagi SMNA-2b 67-plag mid?, plagi SMNA-2b 94-plag?, epil area SMNA-2b 95-plag?, epil area SMNA-2b 96-plag?, epil area SMNA-2b 97-plag?, epil area SMNA-2b 98-plag?, epil area SMNA-2b 99-plag?, epil area SMNA-2b 100-plag?, epil area SMNA-2b 101-plag?, epil area SMNA-2b 103-rim?, plag near bi( SMNA-2b 104-rim, plag near bio SMNA-2b 106-rirn, plag near bio SMNA-2b 106-plag, plag near bic SMNA-2b 107-plag, plap nearbi( SMNA-2b 108-plag, plag near bic SMNA-2b 109-plag, plag near bic SMNA-2b 111-plag, plag near bic SMNA-2b 113-plag, plag near bic SMNA-2b 114-plag, plag near bic SMNA-2b 115-rim, plag near bio SMNA-2b 117-out, plag near bio SMNA-2b? plagS, plag In SMNA-2b? plagS, plag core SMNA-2b? plag3, plag in SMNA-2b? plaga, plag in SMNA-2b? plagS, plag rim SMNA-2b? plag4, rim | SMNA-2b? plag4, plag in SMNA-2b? plag4, alt'n crack SMNA-2b? plag4, core SMNA-2b? plag4, in SMNA-2b? plag4, rim

4.57 0.016 4.424 b.d. 4.269 b.d. 4.235 b.d. 3.853 b.d. 4.442 b.d. 4.163 b.d. 4.049 b.d. 4.293 b.d. 4.247 b.d. 4.054 b.d. 4.236 b.d. 4.735 b.d. 4.563 b.d. 4.301 b.d. 4.381 b.d. 4.061 b.d. 4.465 b.d. 4.287 b.d. 4.772 b.d. 4.922 b.d. 5.143 0.02 6.034 b.d. 4.18 0.33 2.31 0 2.86 0 3.49 0 4.32 0 3.77 0 1.17 0.04 2.25 0.05 1.56 0 2.79 0 3.9 0

10.535 10.527 10.68 10.905 11.55 10.45 11.036 11.044 10.691 10.851 11.013 11.157 10.651 10.754 10.866 10.66 11.13 10.757 10.692 10.458 10.376 8.893 9.017 11.01 17.47 16.95 16.34 15.53 15.91 31.57 29.88 18.24 17.09 15.85

20.348 b.d. 20.45 b.d. 20.345 b.d. 20.207 b.d. 19.16 b.d. 20.464 b.d. 19.784 b.d. 19.712 b.d. 20.166 b.d. 19.924 b.d. 19.815 b.d. 19.648 b.d. 20.189 b.d. 20.052 b.d. 19.92 0.047 20.202 b.d. 19.674 b.d. 20.034 b.d. 20.033 b.d. 20.373 b.d. 0.119 20.589 22.533 b.d. 22.091 b.d. 10.81 0 23.38 0 24.11 0 24.86 0 0 26.3 25.1 0 15.77 0.06 0.04 17.32 0.01 22.3 24.19 0.01 25.74 0

0.239 0.312 0.262 0.11 0.134 0.266 0.221 0.23 0.306 0.275 0.269 0.06 0.089 0.108 0.203 0.241 0.154 0.172 0.22 0.255 0.097 0.077 0.108 0.04 0.1 0.11 0.17 0.2 0.16 0.09 0.03 0.05 0.13 0.28

2.615 2,503 2.667 2.663 3.679 2.592 3.149 3.305 2.804 3.023 3.166 3.195 2.651 2.855 3.004 2.781 3.319 2.901 3.082 2.507 2.272 1.059 0.872 2.55 10.35 9.34 8.46 6.97 8.02 6.68 2.82 11.56 9.47 7.66

SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4

8.274 7.748 7.704 7.866 7.682 7.291 7.677 7.868 8.266 8.035 7.517 8.073 7.22 5.56 5.32

11.412 11.746 12.003 11.349 11.813 11.615 11.855 11.416 11.314 11.417 11.441 11.513 12.38 14.01 14.12

34.598 33.363 33.756 33.145 33.476 31.191 33.325 33.629 34.181 33.818 33.447 34.409 30.43 28.13 27.67

0.006 0.001 0.001 0.001 0.027 0.109 0.024 0.003 0.009 0.015 0.003 0.014 0.02 0 0.01

0.181 0.081 0.056 0.046 0.064 0.08 0.112 0.082 0.1 0.124 0.127 0.11 0.37 0.28 0.46

0.651 1.456 1.479 1.193 1.544 1.653 1.444 1.184 0.616 0.898 1.307 0.861 2.22 4.87 5.16

plag plag plag plag plag plag plag plag plag plag plag plag plagi, rim plagi, in plagi, in

0 0 0.002 0.005 0 0.001 0.004 0.004 0 0.004 0 0.004 0 0 0

b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

F

Ba

b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

0 0 0.04 0 0.03 0.02 0 0 0.03 0.02 0.01

0.01 0.09 0 0 0 0 0.02 0.1 0 0.05 0.15

0.016 0.014 0 0 0.01 0.006 0.014 0 0.005 0 0 0 0.01 0.01 0

0 0.003 0.035 0 0 0.013 0 0 0.018 0.023 0 0.003 0.12 0.12 0.06

^ Mn

Fe

b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.01 0 0.01 0 0.02 0 0.01 0 0 0.01 0 0 0.018 0.016 0 0.021 0 0 0.003 0.036 0.034 0 0

0 0 0 0.009 0.014 0.022 0 0.004 0.005 0 0 0.002 0 0 0

o

P

0.061 b.d. 0.083 b.d". 0.061 b.d. 0.122 b.d. 0.105 b.d. 0.075 b.d. 0.083 b.d. 0.092 b.d. 0.094 b.d. 0.085 b.d. 0.088 b.d. 0.115 b.d. 0.099 b.d. 0.092 b.d. 0.093 b.d. 0.087 b.d. 0.089 b.d. 0.078 b.d. 0.1 b.d. 0.07 b.d. 0.064 b.d. 0.063 b.d. 0.057 b.d. 1.64 0.61 0.62 0.63 0.53 0.45 0.43 0.27 0.56 0.5 0.45 0.023 0.003 0.005 0.019 0.022 0.022 0 0.155 0.086 0.045 0.027 0.055 0.14 0.23 0.23

Sum

0 0 0.02 0.01 0 0 0.02 0 0.01 0.01 0

61.61 61.631 61.71 61.746 61.456 61.672 61.552 61.51 61.511 61.413 61.584 61.555 61.562 61.528 61.387 61.547 61.567 61.497 61.568 61.493 61.545 62.192 61.659 25.27 47.27 47.53 47.69 48.28 47.45 49.29 48.29 47 47.69 47.97

101,448 102.892 101.591 99,271 101.011 101.673 101.24 100.844 101.58 100.043 102.056 101.341 101.551 100.173 101.781 100.955 100.924 101.606 98.229 101.587 101.663 97.005 105.168 55.86 101.57 101.59 101.67 102.16 100.89 105.16 101.05 101.33 101.96 102.01

0 0 0 0.002 0 0 0.002 0.001 0.001 0.002 0 0.004 0 0 0

52.761 51.763 52.421 51.092 51.967 49.097 51.797 51.744 52.182 51.883 51.454 52.64 49.15 48.48 48.13

107.922 106.196 107.478 104.727 106.64 101.1 106.254 106.093 106.819 106.298 105.323 107.688 102.06 101.71 101.17

O •O

Feldspar Analyses

Plagioclase analyses Sample

-— -



Na

Al

Mg

Si

K

SMNA-4 SMNA-4" SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4

plagi, in plagi, Iz rim in crack plagi, Iz rim in crack plagi, core plagi, core plagi, Iz material follov plagi, in | plagi, Iz rim material r plagi, Iz rim material plagi, Iz rim material plagi, rim

5.03 6.76 6.72 '5^04 5.04 7.64 5.11 5.74 5.94 8.15 8.33

0 "o 0 0 0.01 0 0.01 0 0 0 0

14.66 13.31' 13.23 14.67 14.51 12.43 14.4 3.21 10.53 11.97 11.74

27.23 30;35 29.74 27.55 27.11 31.57 27.55 5.02 31.05 32.69 32.43

0.01 0.06 0.08'

SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1?

cpx+lam, outside shre plag 1, small plag plag 1, small plag plag 1, small plag plag 1, lower z shred r plag2, plag rim plag2, plag zone1 plag2, plag inside zon( plag2, plag inside zoni plag2, plag inside zon< plag2, plag inside zon< plag2, plag inside zone plag2, alteration patch plag2, inside zone 1 plag2, rim or zone 1 plag2, plag rim plag2, outside plag rin plag3, alt'n at rim plagS, plag rim plaqS, plag in

5.81 2.23 3.76 3.83 7.28 3.57 7.32 3.13 3.99 2.97 3.26 4.01 7.91 3.02 3.43 4.08 7.57 7.7 3.93 3.35

0 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14.06 26.31 15.48 15.39 13.1 15.59 12.8 16.22 15.47 16.55 15.82 15.43 12.23 16.23 15.77 15.47 12.65 12.39 15.27 15.99

SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2

replacing ab repi ab near epi ab out amphi gm2 midZ abcore gm2 midZ abcore ab out tit2 ab out tlt2 ab out til2

7.203 6.952 8.224 8.312 8.404 6.992 7.751 6.973

0 0 0.006 0 0.011 0.001 0.004 0.002

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

plagi plagi plagi plagi plagi plagi plagi plagi

5.683 6.079 6.161 5.221 6.159 6.085 6.096 5.833

0 0 0 0 0 0 0.008 0.008

Ca

F

Ji

IMn

5.88 3^22 3.29 5.65 5.73 1.74 5.51 0.99 1.4 0.83 0.79

0.03 0.01 0 O7O3' 0 0 0.03 0 0 0.04 0.14

0 0 0.04 o^oT

0.01 0.01 0 0 0 0.03 0

0.21 0.08 0.1 0.34 0.42 0.11 0.43 0.02 0.06 0.04 0.1

27.97 17.32 25.05 25.02 30.18 24.92 29.58 24.1 25.33 23.57 24.29 25.25 30.79 23.79 24.23 25,38 30.6 30.86 25.37 24.25

0 0.08 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0.01 0 0 0

0.13 0.09 0.18 0.13 0.06 0.18 0.05 0.13 0.19 0.12 0.14 0.12 0.13 0.1 0.09 0.09 0.21 0.14 0.23 0.22

4.81 5.66 7.92 7.99 2.71 8.45 2.57 9.06 7.65 9.78 8.64 7.91 1.8 9.33 8.58 7.8 1.78 1.97 7.79 8.8

13.541 13.745 12.948 12.424 12.275 13.941 13.453 13.707

30.126 29.74 33.032 32.925 32.225 29.464 30.621 30.485

0 0 0.04 0.047 0.002 0 0.005 0.001

0.061 0.084 0.059 0.059 0.038 0.077 0.051 0.067

13.293 12.841 12.78 14.419 13.004 13.194 13.191 12.974

28.979 29.45 29.618 28.041 29.553 29.501 29.567 29.756

0 0 0.014 0.009 0.004 0 0.005 0.001

0.868 0.915 0.773 0.731 0.745 0.679 0.684 0.739

6

Fe

P

0

Sum

0.03 0.04 0 0.02 0.02 0

0 0.01 0.01 0 0 0 0.02 0.01 0 0 0

0.32 0.02 0.02 O.25I 0.26 0.01 0.3 0 0.04 0.04 0.02

0.01 0 0 0^ 0 0 0.01 0 0 0 0

48.32 50.08 49.3 48.61 48 50.39 48.37 10.98 47.38 51.09 50.73

101.7 103.89 102.53 102.16 101^09 103.93 101.77 25.98 96.44 104.89 104.29

0.01 0 0.03 0.03 0 0.05 0 0 0.03 0.01 0.02 0 0 0 0 0.02 0 0 0.05 0.05

0 0 0 0 0.02 0 0 0.04 0 0.09 0 0 0.02 0.08 0 0.15 0.06 0.12 0.03 0

0 0 0 0.01 0.01 0 0 0.01 0 0 0 0 0.01 0 0.01 0.01 0 0.01 0 0.02

0.17 0.47 0,56 0.57 0.02 0.51 0.01 0.45 0.5 0.53 0.48 0.38 0.05 0.49 0.5 0.5 0.17 0.13 0.52 0.58

0 0.02 0.03 0.01 0 0 0 0.02 0 0,01 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0 0,01

48.4 46.33 47,03 46.93 49.67 47.09 48.68 46.76 47.26 46.68 46.53 47.19 49.48 46.47 46.42 47.32 49.53 49.67 47.19 46.8

101.36 98.52 100.03 99.91 103.06 100.36 101.03 99.93 100.42 100.31 99.19 100.3 102.44 99.51 99.04 100.82 102.59 103 100.39 100,07

2.891 3.238 0.953 0.558 0.369 3.338 2.329 2.601

0 0.037 0.048 0.005 0 0.046 0.133 0.096

0 0.057 0 0.024 0.008 0 0.008 0

0 0 0.009 0.021 0.006 0.013 0.026 0.013

0.051 0.056 0.144 0.168 0.154 0.077 0.027 0.021

0.011 0.014 0 0 0.009 0 0.008 0

50.072 49.874 52.478 51.729 50.774 49.81 50.605 50.48

103.956 103.797 107.941 106.272 104.275 103.759 105.021 104.446

3.766 3.175 3.257 3.194 3.318 3.578 3.466 3.247

0 0 0.018 0.045 0 0 0 0.02

0 0 0.025 0.008 0 0 0.082 0

0 0 0 0 0 0 0.003 0.003

0.1 0.149 0.103 0.154 0.111 0.132 0.147 0.102

0.01 0.006 0 0.002 0 0.009 0.002 0

48.542 48.597 48.745 48.087 48.89 49.082 49.081 48.968

101.241 101.212 101.494 99.911 101.784 102.26 102.332 101.651

6

1

rim, near b rim, near b rim, near b transition t interior Interior interior interior

o

Feldspar Analyses

Plagioclase analyses Sample

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-l SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Na

plagi plag1 plagi plagi plagi plagi plagi plagi plagi plagi plagi plapl plagi plagi Flag Flag Flag outBloS outPlagI Plagi Flagi Flagi Plagi Plagi Flagi Plagi Plagi Flagi Flagi Plagi Flagi Flagi Plagi Flagi Plagi Flagi Plagi Flagi Plagi Plagi Plagi Plagi Flagi Plagi Plagi Plagi Plagi Plagi Plagi Plagi

ijnterior ^ interior core core core core interior interior Interior interior interior rim rim rim inclusion ir Inclusion ir inclusion In outside Biq outside Pl£ rim rim interior interior Interior interior interior interior interior interior interior interior interior core core core core core core interior interior interior interior interior interior interior interior interior interior rim rim

A!

Mg

6.269 6.149 6.4 6.213 6.233 6.084 6.102 6.05 6.114 5.869 6.197 6.1 6.111 6.594 6.289 6.221 6.369 4.983 4.346 4.726 6.16 6.298 6.445 6.368 6.227 6.524 6.289 6.242 6.068 6.062 6.275 6.271 6.155 6.287 6.1 6.073 6.277 6.193 6.296 6.442 6.057 6.419 6.602 6.312 5.634 6.252 6.316 6.299 6.222 6.149

0.004 0 0.002 0 0 0 0 0 0.005 0 0 0.001 0.003 0.009 0 0.002 0 0 0.085 0.003 0 0.006 0.005 0 0 0.001 0 0.001 0 0 0 0.002 0 0 0.023 0 0 0 0.003 0.002 0 0 0.006 0 0 0 0.003 0.002 0.005 0.001

Si

12.907 12.926 13.054 12.851 12.965 13.148 13.003 12.978 12.954 12.964 12.991 12.917 13.134 13.481 12.929 12.664 12.599 11.594 15.367 12.542 13.056 12.93 12.784 12.992 13.113 12.705 13.199 13.147 13.286 13.091 13.274 13.084 13.257 13.099 13.268 13.265 12.694 13.372 13.055 13.102 13.18 13.131 12.613 12.982 12.901 13.218 13.158 12.854 13.251 13.241

CI

29.666 29.703 29.935 29.937 29.891 29.363 29.386 29.611 29.574 30.003 29.623 29.551 30.086 31.059 29.734 29.853 29.863 30.967 27.612 29.556 29.468 30.079 30.117 29.736 29.854 30.079 29.399 29.3 29.925 29.669 29.42 29.913 29.409 29.66 29.298 29.445 29.798 29.491 29.737 29.853 29.76 29.562 30.183 29.726 30.381 29.504 29.73 30.078 30.121 29.384

K

0.011 0.015 0 0.004 0.004 0 0.004 0 0 0 0.002 0 0.001 0.007 0.009 0 0.003 0 0.029 0.021 0.006 0,003 0.002 0 0.007 0.004 0 0 0 0 0.009 0.001 0 0 0 0.002 0 0.004 0.001 0 0 0 0 0.009 0 0 0.004 0.008 0 0


Ca

F

Ti

3.213' 3.21 3.246 3.09f 3.238 3.515 3.449 3.31 3.432 3.272 3.302 3.202 3.252 2.686 3.047 2.912 2.904 1.323 1.442 1.802 3.465 3.125 2.841 3.255 3.325 2.988 3.477 3.474 3.406 3.514 3.514 3.179 3.718 3.325 3.372 3.614 3.156 3.65 3.318 3.275 3.422 3.449 2.729 3.263 2.936 3.473 3.434 3.051 3.243 3.517

0.011 0.02 0 0.014 0.011 0 0.036 0.009 0 0.009 0.038 0.027 0.011 0.002 0.005 0.002 0.009 0.018 0.061 0.023 0 0.02 0.027 0.005 0 0 0 0 0.009 0.002 0.005 0.007 0.043 0 0.002 0.016 0.007 0 0.005 0.027 0.016 0 0.014 0 0 0.007 0 0.005 0.041 0.016

1Ba

0.098^ 0 0 0 0.033 0 0.09 0.057 0 0 0.049 0.041 0.065 0.138 0 0 0.057 0 0.025 0 0 0 0 0.025 0 0.098 0 0 0 0.033 0.016 0 0 0.057 0.041 0 0.098 0.008 0.098 0.016 0.008 0 0.057 0 0 0 0.164 0 0.041 0

Fe

Mn

0.018 0 0 0.004 0.001 0.017 0.024 0 0.001 0.017 0 0 0 0 0.011 0 0.031 0.011 0 0.013 0 0 0.018 0 0 0.008 0.007 0.001 0.003 0 0 0 0.01 0.013 0.007 0 0 0.016 0.013 0.016 0 0 0 0 0 0 0.02 0 0 0.006

6

P

0.147 0.1 0.115 0.134 0.115 0.133 0,152 0.135 0.107 0.141 0.123 0.12 0.198 0.269 0.068 0.115 0.127 0.372 0.528 0.155 0.158 0.14 0.144 0.109 0.103 0.118 0.128 0.144 0.09 0.172 0.115 0.112 0.119 0.118 0.118 0.097 0.126 0.142 0.131 0.164 0.128 0.128 0.13 0.17 0.135 0.127 0.126 0.115 0.137 0.165

0 0 0 0.015 0.019 0 0.011 0.003 0 0.018 0.006 0.003 0 0 0 0.001 0 0 0.016 0.014 0.003 0 0.016 0.003 0 0 0 0.009 0 0.005 0.006 0 0 0 0.008 0 0.002 0.02 0.01 0.016 0 0 0.002 0.011 0 0 0.003 0 0 0.002

Sum

'48.91 48.958 49.427 49.158 49.258 48.857 48.74 48.884 48.897 49.292 48.982 48.754 49.623 51.022 48.982 48.816 48.807 48.787 47.944 47.649 48.924 49.429 49.325 49.127 49.349 49.188 48.995 48.833 49.56 49.143 49.091 49.36 49.122 49.121 48.827 49.066 48.837 49.302 49.174 49.444 49.289 49.139 49.19 49.124 49.417 49.114 49.267 49.311 49.773 49.018

101.988 101.852 102.911 102.175 102.527 101.817 101.692 101.772 101.807 102.333 102.067 101.462 103.448 106.494 101.929 101.437 101.614 102.002 99.776 98.339 102.03 102.816 102.574 102.337 102.707 102.482 102.192 101.848 103.043 102.374 102.421 102.664 102.471 102.397 101.699 102.183 101.72 102.816 102.56 103.059 102.544 102.464 102.33 102.318 102.16 102.37 102.922 102.517 103.588 102.254

Feldspar Analyses

Plagioclase analyses Sample

SMRN-i " Plagi SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1^ Plag2 SMRN-f Plag2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plaq2 SMRN-1 Plag2 SMRN-1 Plaq2

Na

rim rim rim rim rim interior interior interior interior interior interior interior interior interior interior j interior interior interior core core core core core Interior interior interior interior Interior interior rim rim rim outer rim o

Mg

6.073 0 2.976 0.03 5.652 0,005 ' 5.213 " " 0,009 6.187 0 6.169 0 6.126 0 6.241 0 6.192 0 6.21 0,007 6.229 0,006 6.177 0 5.954 0 6.154 0 6.328 0 6.016 0 6.343 0.003 6.427 0 6.984 0 6.186 0 6.203 0.001 6.192 0 5.864 0 6.304 0 6.238 0.001 6,119 0.001 6.174 0.001 6.238 0 6.202 0 6.149 0.009 5.925 0.006 5.385 0.011 5.664 0.006

Al

CI

Si

13.144 23.724 13.445 14.182 13:148 13.057 13.046 12.946 13.039 12.9 13.166 13.164 13.412 13.153 13.248 13.173 12.921 12.87 12.735 13.102 13.119 13.181 13.186 12.874 12.923 13.127 13.131 13.143 13.334 14.186 13.244 14.777 13.393

29.605 22.54 28.841 "2Z803 29.621 29.602 29.778 29.833 29.904 29.889 29.896 29.68 30.148 29.576 30.059 29.889 30.195 30.365 30.296 29.668 29.709 29.636 29.89 29.604 29.798 29.603 29.784 29.612 29.691 29.255 29.327 27.982 28.916

1K

0.005 0.039 0 0 0.012 0.002 0 0.002 0.005 0.006 0.004 0.01 0,001 0,001 0 0 0 0.012 0.001 0 0.007 0.005 0 0 0 0.001 0 0.009 0 0.002 0.003 0.001 0.001

Ti

Ca'

0.836 0.696 0.706 0.554 0.763 0.771 0.71 0.762 0.725 0.78 0.719 0.696 0.705 0.695 0.72 0.754 0.821 0.848 0.844 0.689 0.703 0.757 0.705 0.716 0.745 0.714 0.753 0.719 0.718 0.674 0.747 0.581 0.735

3.483 2.159 3.973 5.003 3.433 3.376 3.304 3.174 3.26 3.034 3.288 3.39 3,36 3,497 3,266 3.142 2,866 2.816 2.747 3.431 3.373 3.384 3.357 3.351 3.176 3.479 3.331 3.37 3.466 3.461 3.511 4.982 3.95

F

0 0.014 0.045 0.023 0.014 0 0.011 0.02 0.009 0.02 0.025 0 0.018 0 0.016 0 0.014 0 0.032 0.029 0 0 0.025 0.025 0.018 0.005 0.002 0.029 0.002 0.032 0.016 0.02 0.007

Ba

0 0.081 0 6 0.066 0.041 0 0 0 0 0 0.058 0 0 0 0 0.09 0 0.025 0 0.008 0.008 0 0 0.033 0.041 0.008 0.008 0 0.041 0.107 0 0

Mn

Fe

0 0.02 0.003 0.004 " 0 0 0.018 0 0 0 0 0 0.008 0 0.018 0.007 0 0.014 0 0.001 0 0.033 0.02 0.014 0.004 0.018 0 0 0 0.028 0.006 0.011 0.027

0

P

0.119 0.201 0.274 0.3 O.W 0.126 0.128 0.142 0.177 0.069 0.085 0.191 0.144 0.145 0.123 0.128 0.108 0.1 0.082 0.121 0.136 0.117 0.131 0.081 0.078 0.133 0.128 0.155 0.16 0.198 0.185 0.291 0.235

0.002 0.036 0.011 0.015 0 0.011 0.001 0.01 0.003 0 0.008 0.005 0 0.011 0 0.003 0.009 0.007 0 0.001 0.006 0 0 0.005 0.007 0 0.012 0 0 0.002 0.002 0 0

Sum

49.133 48.919 48.644 48.343 49.152 49.026 49.179 49.169 49.335 49.098 49.456 49.205 49.893 49.134 49.736 49.317 49.431 49.619 49.232 49.176 49.21 49.189 49.369 48.908 49.069 49.098 49.298 49.152 49.425 49.687 48.838 49.115 48.641

102.4 101.434 101.599 IOi.449 102.569 102.181 102.301 102.299 102.649 102.013 102.882 102.576 103.643 102.366 103.514 102.429 102.801 103.078 101.978 102.404 102.475 102.502 102.547 101.882 102.09 102.339 102.622 102.435 102.998 103.724 101.917 103.156 101.575

K>

Feldspar Analyses

K-feldspar analyses Sample

Mg

Na

A!

SI

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

0.361 ^ 0787 0.721 0.801 0 768 0.48 0.483 0.696 0.563 0.654 0.489 0.703 0.533 0.836 0.532 0.805 0716 0.859 0.871 0.795 0.843 1.03 0.824

0.005 0 0.005 0.005 0 0 0.006 0 0 0 0.003 0 0.001 0.001 0.007 0.002 0.007 0 0 0 0 0 0.002

9.311 9.589 9.638 9.571 9.673 9715 9.664 9.739 9.66 9.577 9.001 8.706 9.736 9.329 9.741 9.636 9.764 9.815 9.687 9.846 9.89 9.604 10.124

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5a SMCA-5a

0.606 0.414 0.688 0.931 0.384 0.537

0 0.011 0 0.003 0.385 0.27

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

0.828 0.906 1.058 0.807 0.623 1.87 1.387 1.497 1.735 1.071 0.502 2.079 0.819 1.373 0.508 1.529

SMCM-6 SMCM-6

0.818 0,813

CI

29.594 29.744 29.845

K

Ca

Ti

F

Ba

29.835 29.909 29.786 29.764 29.802 29.908 27.255 27.198 29.863 29.494 30.227 31.233 30.753 30.793 30.76 30.643 31.344 29.807 30.706

0.008 0 0 0.004 0 0 0 0.007 0.005 0.006 0 0.001 0.004 0.005 0.006 0.003 0.001 0 0.007 0.092 0.359 0.059 0.003

13.162 12.585 12.86 12.454 12 584 13.211 13.244 12.858 13.01 12.798 11.313 10.805 12.417 11719 12.747 12.205 12.328 12.127 12.071 12,247 11.253 10.091 12.149

0 0.041 0.025 0.028 0.053 0,009 0.013 0 0.015 0,019 0 0 0,11 0,051 0,029 0,037 0,028 0,024 0,018 0.028 0.082 0.816 0.034

0.016 0.014 0.027 0 0 0 0 0.036 0 0.016 0 0.002 0.022 0 0.004 0 0,007 0,038 0,015 0,011 0 0 0.002

0.15 0 0 0 6.115 0.089 0,08 0,018 0,089 0,133 0 0,642 0,144 0 0 0,287 0 0.358 0,358 0 0 0.501 0,571

9.647 9.746 9.727 9.663 9.11 9.406

30.072 29.738 29.996 30.539 28.803 29.004

0 0.007 0 0.012 0.016 0.011

12.856 13.015 12.789 12.072 12.266 12.886

0.009 0.209 0.022 0.03 0.164 0.005

0 0,002 0.011 0 0,08 0,105

0.001 0.002 0 0 0.001 0 0.001 0.001 0.002 0.002 0.924 0.01 0 0.003 0.982 0.012

9.733 9.833 9.815 9.904 9.884 10.159 9.854 10.083 10.015 9.844 8.022 10.114 9.762 9.851 9.1 10.145

30.451 30.722 30.689 30.872 30.722 30.34 30.119 29.967 30.173 30.66 27.885 31.291 29.995 30.308 28.745 30.733

0 0.01 0.004 0.01 0.017 0.002 0.066 0.003 0 0.059 0.059 0 0.106 0.022 0.078 0.187

12.6 12.094 12.222 12.243 12.617 10.228 10.794 10.703 10.595 12.237 10.475 9.828 12.416 11.641 12.132 10.681

0.054 0.034 0.041 0.045 0.005 0.249 0.073 0.153 0.093 0.037 0.264 0.034 0.012 0.031 0.019 0.034

0.004 0.001

9.77 9.739

30.228 30.283

0.002 0

12.246 12.476

0.022 0,02

29.B55

Mn

Fe

P

Sum

0

0,008 0,001 0,004 0,011 ^ 6,042 0 0,021 0 0 0 0 0 0,01 0 0,003 0,007 0 0 0,015 0 0 0,1 0

0,52 0,107 0,108 0,145 "0,169 0,011 0,073 0,028 0,143 0.158 0.059 0.065 0,112 0,125 0,105 0,119 0,075 0,112 0,087 0,098 0,125 0,136 0,114

0 0^002 0,002 0,007 "O,6O9 0,003 0 0,013 0 0,01 0,001 0 0,019 0 0,005 0 0,002 0 0,01 0,004 0,001 0,006 0,001

44,92 45,327 45,526 45,424 45,484 45,563 45,414 45,488 45,415 45,46 41,565 40,938 45,469 44,647 45,953 46,866 46,539 46,512 46.344 46,487 47,095 45,105 46,572

98,055 98,F9> 98,761 ^98,305 98,732 98,99 98,784 98,647 98,702 98,739 89,686 89,06 98,44 96,207 99,359 101,2 100,22 100,638 100.243 100.251 100,992 97,255 101,102

0,915 0,917 0,213 0 0,045 0,153

0,003 0 0 0 0,03 0

0,21 0,169 0,217 0,181 0,421 0,372

0,007 0,063 0 0 0,003 0,012

45,374 45,192 45,674 46,247 44,047 44,541

99,699 99,483 99,337 99,678 95,754 97.302

0,02 0,009 0,018 0 0,02 0,016 0,005 0 0 0,011 0,261 0,027 0,118 0,04 0.147 0.018

0 0,289 0,217 0,072 0,506 0,358 0 0,072 0 0 0,071 0,08 0 0 0,098 0,009

0 0,004 0 0,03 0,027 0 0,035 0,013 0,025 0,032 0,029 0 0,004 0,057 0,026 0,024

0,195 0,148 0,081 0,141 0,09 0,104 0,073 0.067 0,071 0,099 2,228 0,285 0,516 0,456 1,039 0,157

0 0,004 0 0,004 0 0 0,012 0 0,001 0,024 0 0 0,007 0 0 0,013

46,31 46,486 46,525 46,811 46,427 46,337 45,837 45,878 46,125 46,645 42716 47,469 45,902 46,339 44,504 46.814

100.192 100.541 100.67 100.939 100.939 99.663 98.256 98.437 98.835 100.721 93.436 101.217 99.657 100.121 97.378 100.356

0.025 0

0.784 0,216

0,014 0,011

0.262 0.179

0 0.003

45.698 45.979

99.873 99.72

-

U)

Feldspar Analyses

K-feldspar analyses Sample

SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6a SMCM-6a SMCM-6a

Na

Mg

Al

Si

CI

K

Ti

Ca

F

Ba

Mn

Fe

P

d

Sum

0.623 0.M1 0.932 0.99 0.646 1.064 0.589 0.726 0.53 0.751 0.917 0.788 1.321 1.308 0.242 0.273 0.925

0.006 6 0.004 0 0.001 0.001 0,007 0 0,009 0 0 0.001 0 0,002 1,507 1,002 0.625

9,84 9,859 9.914 9.796 9.696 10.038 9.9 9.84 9.656 9,958 9.838 9,859 10,262 9.986 9,787 8,841 9,584

30,275 30,506 30,1081 30,457 30,57^ 29,448 28.88 30.215 29,833 30,077 29.86 29.818 28.924 29.807 27.292 26.7 28.699

0~118 0.008 0.012 0.643 0.011 0 0.003 0 0.006 0 0 0 0.004 0 0.01 0.052 0.018

12.056 li48 11.814 11^955 12.374 11.211 11.89 12,285 12,242 12,134 11,972 12,045 10,129 10,855 11.562 11.714 11.429

0.024 OTO27 " 0.093 0.046 0.042 0.111 0.024 0.005 0.076 0.008 0.018 0.034 0.822 0.105 0.009 0.242 0.05

0 0.007 0 0.002 0 0 0 0.323 0.288 0.173 0.169 0.294 0.018 0 0.016 0.523 0.092

0 0 0.215 0.923 0.288 0 0 0 0 0 0.43 0.359 0.996 0 0 0.054 0.036

0 o1 0,014 0.01 0 0.006 0 0.082 0.109 0.099 0.031 0.108 0.006 0 0.054 0.048 0

0.147 0.049 0.161 0.129 0.125 0.173 0.171 0.556 0.451 0.354 0.365 0.535 0.083 0.111 1.699 1.582 0.499

0 0.008 0.025 0 0.004 0.015 0 0.003 0.004 0.004 0 0.018 0 0.001 0.005 0 0.003

45.96 ' 99.049 46.306 99.791 45.893 99.185 45.729 '100.677 46ii'51 99'91i 45.262 97.329 44.412 95.876 46.35 100.385 45.664 98.868 46.126 99.684 45.594 99.194 45.749 99.608 44.561 97.126 45.597 97.772 43.764 95.947 42.316 93.347 44.504 96.464

SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

1.087 1.805 1.344 1.248 0.741 2.167 1.896 1.29 1.081 1.845 1.764 1.238 1.252 1.189 0.747

0.006 0 0,006 0.001 0.094 0.009 0 0.008 0.008 0 0.004 0.006 0 0 0,006

9,78 10.004 9,633 10,027 10,36 10,169 9,86 9,847 9.759 10.087 9.974 10.095 9.66 9.675 10.2

31.696 31.156 31.079 31.499 30.708 32.115 30.837 31.341 30.487 31.069 30.564 31.302 30.252 29.924 32.11

0.072 0 0.002 0.003 0.002 0.068 0.895 0.048 0.005 0 0.002 0,109 1.164 3,003 0,137

11.919 10.812 11.668 11.526 12.003 9.844 10.402 11.539 11.599 10.662 10.692 11.347 10.359 11.096 12.244

0 0.023 0.009 0.007 0.25 0.13 0.118 0.078 0.104 0.094 0.105 0.03 0.271 0.135 0.029

0,038 0.024 0.016 0.013 0.04 0 0 0 0.018 0 0.004 0.024 0 0 0

0 0 0 0 0.715 0.567 0 0 0 0.214 0.214 0 0.072 1.191 0,573

0 0 0.003 0.037 0.024 0.027 0.035 0 0 0.004 0.013 0.007 0.208 0.065 0.038

0.199 0.181 0.204 0.222 0.217 0.023 0.094 0.114 0.128 0.121 0.165 0.055 0.078 0.097 0.145

0.004 0 0.004 0 0 0.014 0.007 0 0.009 0.009 0.002 0 0.014 0.01 0

47.705 47.314 46.918 47.687 46.873 48.242 46.585 47.335 46.272 47.19 46.508 47.422 45.532 44.319 48.22

102.506 101.319 100.886 102.27 102.027 103.375 100.729 101.6 99.47 101.295 100.011 101.635 98.862 100.704 104.449

SMCM-9a SMCM-9a SMCM-9a

0.404 0.598 0.294

0,007 0 0.006

9.787 9.752 9.586

30.547 30.329 30.483

0,01 0 0,007

13.219 12.923 13.359

0 0.025 0.02

0 0.025 0.009

0,036 0 0

0 0.032 0

0.038 0.013 0,035

0.005 0.005 0

46.36 46.14 46.12

100.413 99.889 99.919

SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-lla SMCM-11a SMCM-11a SMCM-11a SMCM-lla SMCM-11a SMCM-lla

1.403 1.792 1.94 1.992 1.917 0.927 5.904 1.664 2.025 1.771 1.951 1.441

0,014 0,006 0 0,002 0 0,001 0 0 0,002 0 0,01 0

9.734 9.866 9.688 10.013 9.983 9.681 10.323 9.81 9.76 9,826 9,834 9,7

29.62 29.753 29.967 29.177 28.978 29.832 30.977 29,95 29,827 29,999 29.983 29.282

0,016 0,003 0,021 0 0,006 0,015 0,021 0,003 0.339 0.019 0.065 0.979

11.35 10.641 10.574 9.788 10.174 12.298 5.304 11.03 9.991 10.977 10.39 11.196

0.028 0.03 0.016 0,106 0,118 0,014 0,184 0.034 0.054 0.042 0.033 0.004

0.018 0 0.016 0 0 0 0 0.018 0 0 0 0

0.138 0 0 0 0 0,069 0,331 0,343 0 0 0 0,479

0 0 0 0.013 0 0 0.031 0 0.007 0,034 0 0.017

0.234 0,123 0,128 0,131 0.132 0,106 0,055 0.216 0.095 0.048 0.06 0.122

0,003 0,008 0,011 0,018 0 0.004 0.017 0 0.013 0.005 0 0.02

45.259 45.537 45.663 44.953 44.73 45.45 47.592 45.629 45.408 45.825 45.736 44.427

97.817 97.759 98.024 96.193 96.038 98.397 100.739 98.697 97.521 98.546 98,062 97,667

;E:

Zn

0 0,047 0

U)

Feldspar Analyses

K-feldspar analyses Sample

SMCM-11a SMCM-1 la SMCM-11a SMCM-1la' SMCM-1la SMCM-1la SMCM-1la SMCM-1 la SMCM-1la

Na

sT

Al

Ma

CI

K

"1.879 2.369 1.753 1.376 1.079 0.592 0.603 1.268 0.985

0.008 0 b 0.007 0.003 0 0.008 0.012 0.019

10.076 10.046 9.979 9.929 9.663 9.655 9.439 9.708 9.849

29.162 29.415 29.133 29.198 '297819 29.938 29.509 29.843 30.177

0.008 0 0 0 '0.06 0.016 0.497 0 0.02

SMPG-2

0.017

0.002

9.679

31.427

SMPG-3 SMPG-3

1.204 4.341

0 0.019

9.721 9.963

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

0.985 0.931 0.823 0.871 0.547 0.964 0.779 0.211 0.394 0.539 0.793 0.946 0.22 1.065 0.532 0.576

0.001 0 0.005 0.003 0.003 0 0.004 0.002 0 0 0.002 0.001 0.004 0.008 0.003 0.005

SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la

0.916 0.369 0.55 0.256 0.212 0.469 2.962 2.956 3.346 3.496 3.019 2.896 2.952 2.978 3.2 3.178 2.94 2.94

0.059 0.254 0.002 0.003 0 0.003 0 0 0.001 0 0.004 0 0 0.001 0 0 0 0.001

Ca

Tl

F

Mn

Ba

9.857 9.409r 10.249 10.89 12.307 12.814 12.564 11.255 12.1

0.049 0.104 0.052 0.058 0.052 0.012 0 0.186 0.001

0 0.032 0 0 0.038 0 0 0 0.056

' 0 0 0 6.754 0;069 0 0 0 0.054

0

11.876

0.016

0

0.011

29.674 30.559

0.056 0

12.433 8.007

0.014 0.226

0.01 0

0 0.029

9.801 9.748 9.679 9.71 9.781 9.997 10.223 9.964 9.879 9.672 9.689 9.767 9.527 9.774 9.959 10.31

30.097 29.917 30.111 29.901 31.35 31.74 30.725 32.87 31.599 31.853 31.859 32.328 31.444 30.031 29.822 29.332

0.016 0 0.187 0 0 0 0.004 0 0 0.003 0.147 0.013 0 0.009 0.004 0.014

12.763 12.826 12.929 12.938 11.988 10.228 10.457 9.019 11.41 10.794 11.335 9.942 12.139 12.225 12.927 12.947

0.044 0 0.007 0.019 0.001 0.016 0.012 0.021 0.014 0.019 0.022 0.02 0.008 0 0.001 0.002

0.002 0.025 0.028 0.006 0 0 0.05 0 0.04 0 0.013 0.017 0 0.029 0.018 0.009

0 0.016 0 0 0 0.02 0.021 0 0 0 0 0 0 0 0 0

10.087 10.123 10.138 10.535 10.327 9.925 10.627 10.85 10.604 10.259 10.609 11.01 11.024 11.033 10.897 10.717 10.974 10.899

30.486 30.191 30.958 30.758 30.355 30.38 31.107 30.404 32.677 31.753 30.796 29.941 30.07 29.705 30.263 30.984 30.163 29.963

0.029 0.004 0.014 0.079 0.092 0.035 0 0 0.121 0 0 0 0.006 0 0 0 0 0

12.119 13.053 13.083 12.87 13.021 13.359 7.127 6.657 5.246 7.466 6.882 6.421 6.494 6.429 6.143 6.536 6.453 6.29

0.012 0.017 0.001 0.026 0.024 0.008 0.242 0.219 0.203 0.221 0.243 0.236 0.245 0.273 0.296 0.228 0.221 0.227

0.011 0.105 0.013 0 0 0.027 0 0 0.008 0 0 0 0 0 0 0 0 0

0 0.122 0.038 0 0.094 0.122 0.009 0 0.012 0.001 0.013 0 0 0.018 0.001 0 0 0

Fe

0.018 0.001 ^ 0 0 0 0 0.037 0.031 0.004

P

Sum

0

0.051 0.08 0.108 0.062 0.163 0.061 0.076 0.111 0.198

0 0.004 0.008 0.007 0.013 0 0 0 0

44.903 45.292 44.838 44.543 ' 45.533 45.545 44.725 45.505 46.043

0

0.12

0.007

46.9

100.055

0.283 0.472

0.02 0

0.014 0.071

0.024 0.016

45.501 47.025

98.954 100.728

0.297 0.243 0.25 0.337 0.382 0.389 0.661 0.799 0.593 0.202 0.291 0.394 0.679

0 0 0.026 0.001 0 0 0.002 0 0.009 0.017 0.021 0.007 0.001 0 0 0.011

0.209 0.153 0.131 0.104 0.091 0.115 0.066 0.027 0.013 0.051 0.039 0.038 0.025 0.137 0.18 0.165

0.006 0.004 0.004 0 0.096 0.172 0.54 0.003 0.021 0.12 0.027 0.005 0.001 0.107 0 0.176

46.082 45.795 45.949 45.735 47.256 47.788 47.343 48.345 47.393 47.494 47.614 47.966 46.951 45.982 45.732 45.725

100.303 99.658 100.129 99.625 101.495 101.429 100.887 101.261 101.365 100.764 101.852 101.444 100.999 99.367 99.178 99.272

0.004 0 0 0.035 0 0 0 0.019 0 0 0 0 0 0 0 0 0.009 0

0.515 0.327 0.736 0.233 0.205 0.363 0.151 0.174 0.093 0.174 0.184 0.163 0.128 0.204 0.19 0.147 0.199 0.198

0 0 0 0 0 0.002 0 0 0 0.001 0.002 0 0.006 0.005 0 0.003 0.002 0.008

46.7 46.487 47.361 47.211 46.517 46.41 48.008 47.536 49.122 48.401 47.703 47.156 47.339 47.035 47.459 47.984 47.369 47.122

100.938 101.052 102.894 102.006 100.847 101.103 104.42 104.936 102.383 103.637 104.345 104.606 104.942 105.001 104.852 104.694 104.776 104.721

4.187 6.121 0.949 1.864 4.891 6.783 6.68 7.318 6.401 4.917 6.446 7.074

96.011 96.752 96.12 96.824' 98.799 98.633 97.458 97.919 99.506

Feldspar Analyses

K-feldspar analyses Sample SMPW-la SMPW-1a SMPW-la SMPW-la SMP"W-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-la SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Na



-

"

~AI

Mg_

SI

CI

K

Ca

F

Ti

Ba

2^92 3.053 3.T7 3.109 3.195 2.635 0.276 0.518 0.646 0.531 0.701 0.934 1.694 0.939 1.043 0.76 1.436 2.983 2.958 2.975 2.551 2.926 3.051 2.984 3.649 2.503 0.356 2,238 0.901 0.338

0.011 0 0 0.001 0,003 0 0,005 0,003 0 0 0,01 0,003 0.003 0 0,005 0 0,005 0 0 0 0 0.008 0 0 0,008 0,077 0,046 0,009 0,002 0

11,053 10,969 10,979 11.028 11.083 10.997 10,423 9.916 10.056 10.54 10.227 10.544 10,018 10,436 10.875 10.531 10.802 10.844 11.053 10.963 10,646 10,925 10,79 10,742 10,893 11,051 9,389 10,379 9,86 10,332

'29.352 30.272 3ai 55 29.66 30,01 30,312 33.55 32,642 33.051 32.667 32.261 30.943 31.43 30.912 31,65 29,123 29,141 29,104 29,143 29,744 29,895 29,654 29,696 29,109 30,662 31,315 31,898 33,718 32.468 31.883

^ 0 0 " 0.003 0 0 0 0.036 0.045 0.012 0.017 0.067 0.011 0,005 0,001 0,086 0 0.002 0 0 0.003 0 0 0 0.004 0 0.007 0.015 0.01 0.003 0.001

6,117 6,275 6,165 6,225 5^901 5,493 7,532 10,012 9.281 8.014 8.783 9,372 9,929 9,133 6,937 10,216 9,835 6,482 6.204 6,603 7,245 6,607 6,761 6.698 7,005 5,362 8,499 6,178 10.742 9,321

0,312 0,283 0,288 0,291 0,328 0,28 0,045 0,028 0,022 0,053 0.094 0.127 0.054 0.045 0.11 0.042 0.085 0.287 0.322 0.257 0,201 0,239 0.285 0,406 0,279 0,409 1,937 0,142 0,047 0,03

0 0 0 "b 0 0 0,02 0,012 0 0 0,014 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,017 0 0 0

"

4.267 3.784 3.696 3.563 3.307 3.31 2.706 4.587 3.936 4.017 3.935 3.495 2.877 3.03 2.949 2.438 2.591 2.517 2.679

0,024 0,006 0,013 0,168 1.636 1.126 2.167 0,007 0,005 0,01 0,002 0,005 0,002 0,005 0.005 0 0.003 0.009 0,009

12,087 11,747 11,319 12,329 9,972 9.873 9,8 10.533 10.046 10.102 10.007 10,136 10,226 9,927 10,1 10,094 10,08 10,117 10,137

28.568 28,647 29.01 29,089 26,798 27,982 25,764 30,049 30,15 29,902 29.62 29.143 28.414 28.276 28.137 27.567 27,454 27,899 27,945

0.018 0.013 0.014 0.011 0.037 0.03 0.042 0,001 0,022 0,007 0,001 0,008 0,014 0,033 0,029 0,037 0,033 0,006 0

4,847 5,916 6.455 5.541 7.049 7.369 7.477 5,491 6,172 6,166 6,438 6,941 7,705 7,223 7,365 7,906 7.539 7,911 7,816

1,495 1,1 0,742 0,808 0,158 0,145 0,209 0,511 0,43 0,351 0,335 0,281 0,294 0,285 0.277 0.255 0.306 0.293 0.287

0 0,052 0,044 0.029 0.699 0.541 1.181 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.151 0.051 0.326 0 0 0 0.061 0 0 0 0,026 0,079 0.044 0.087 0

0 0 0 b 0.019 0.01 0 0.009 0.006 0 0 0.024 0 0 0 0 0 0.004 0 0.013 0.035 0 0.002 0 0.01 0 0.063 0,012 0 0.007

Mn 7.876 6.202 6.592 7.157 " 7.137 6.88 0.335 0.292 0,264 1,911 1,067 4,322 1,785 4,627 4,395 6,113 7,296 7,85 8.307 6.621 6.273 7.142 6.721 7.508 5,421 3,312 0.441 0.196 0.125 2.767

Fe 0 0.012 b 0.001 0.018 ^ 0.004 0.003 0 0.009 0 0 0.008 0 0.016 0 0 0,022 0 0 0 0 0 0,01 0,008 0,01 0.002 0.013 0,014 0.006 0.013

0.13 0.196 0.156 0,138 0,149 0,137 0,218 0,097 0,089 0,04 0,402 0.102 0.097 0.046 0.082 0.057 0.103 0.144 0.184 0.142 0.16 0.2 0,123 0.158 0,151 0.665 0.451 0.147 0.295 0.309

P 0,006 0 0,003 0 0,003 0,007 0 0 0,004 0 0 0 0,002 0 0 0 0,003 0,001 0,005 0 0,003 0 0,002 0,006 0 0,002 0.304 0.007 0.008 0

46.633 47.4^ 47.416 46.945^ 47.383 47.318 49.267 48,32 48,795 48,672 48,185 47,461 47,601 47,27 48,096 45.645 46.246 46.239 46.486 46.938 46.758 46.861 46.811 46.22 48.118 48.267 47,946 49,829 48,402 47,965

Sum 104.409 104.746 104^928 104.555 105^229 104.072 101.711 101.896 102.236 102.446 101.811 103.85 102.617 103.425 103.278 102.487 104.976 103.939 104,66 104.26 103.766 104.563 104.251 103.845 106.207 102.973 101.376 102.881 102.858 102.966

0 0 0 0.026 0,107 0,068 0.125 0.023 0 0.019 0 0.007 0 0 0 0.02 0 0 0.032

0.215 0.156 0.183 0.319 3.188 2.303 4.054 0.176 0.143 0.136 0.132 0.099 0.191 0.171 0.148 0.135 0,175 0,155 0,217

0.001 0.001 0.004 0.002 0 0.007 0.011 0 0.006 0.007 0.001 0.01 0.022 0 0 0.004 0 0.016 0.003

46,449 46,136 46.117 47.035 44,476 45,143 43,907 46,591 46,138 45,913 45,485 45.015 44.247 43.738 43.714 42,965 42,839 43.43 43,584

97.971 97.558 97.597 98.92 97.578 97.948 97.769 97.969 97.048 96.63 96.017 95.14 93.992 92.688 92,75 91,5 91,064 92,44 92,709

0

Feldspar Analyses

K-feldspar analyses Sample SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Na

Mg 2.8 2.789 2.884 2.914 2.892 2.945 2.814 2.856 2.841 2.881 2.929 1.054 0.287 1.161 0.623 2.351 3.068 1.173 2.782 2.985 3.101 3.092 3.244 2.073 1.247 3.049 2.967 3.061 2.926 3.185 3.185 3.324 3.276 3.135 3.045 2.311 3.233 2.54 2.239 2.387 2.911 2.547 2.536 2.948 2.881 3.119 3.128 2.999 2.645 3.131

A! 0 0.007 0.007 0 0.005 0.005 0.019 0.005 0.007 0.021 0.093 0 0 0.003 0 0.002 0 0.005 0.001 0.002 0 0.003 0 0 0 0 0 0 0.01 0 0,008 0 0 0.001 0.001 0.004 0 0.002 0.002 0.002 0 0 0.005 0 0.007 0 0.006 0 0 0

Si 10.178 10.173 10.11 10.026 9.957 9.904 9.675 9.65 9.687 9.701 9.675 10.493 10.999 11.41 11.37 11.464 11.597 11.814 11.589 11.459 11.639 11.451 11.62 11.623 11.435 11.551 11.532 11.635 11.486 11.547 11.431 11.518 11.524 11.564 11.543 11.46 11.591 11.527 11.44 11.713 11.596 11.682 11.579 11.572 11.703 11.587 11.489 11.537 11.527 11.659

CI 27.958 27.633 27.464 27.434 26.96 27.45 26.737 27.118 27.305 27.189 27.272 31.011 31.429 29.152 29.547 28.96 28.47 28.194 27.723 28.817 28.752 28.559 28.737 28.058 28.3 28.518 28.329 28.281 28.28 29.2 28.838 28.527 29.004 26.638 28.806 29.009 29.239 28.528 28.716 28.904 28.214 28.543 28.225 28.468 28.096 29.021 28.666 28.386 28.452 28.314

JK 0.016 0.019 0.035 0.05 0.082 0.048 0.124 0.124 0.106 0.101 0.088 0.008 0.114 0.024 0.028 0.012 0 0.016 0.007 0.005 0.004 0.018 0 0.012 0.009 0 0.009 0.004 0.002 0.004 0.017 0.007 0.017 0.015 0.012 0.04 0.009 0.018 0.003 0.026 0.001 0.034 0.01 0.003 0 0 0 0 0 0

Ti

Ca 7.68Z 7.342 7.24 7.198 7.071 6.953 7.055 7.084 7.029 7.129 6.949 11.91 12.339 10.251 11.576 8.201 6.844 9.688 7.03 7.619 7.156 7,097 7.023 8,492 9.715 7.298 7.138 7,042 7,146 7,374 7.362 6.897 7,33 7.233 7,605 8,805 7.341 7.942 8.575 7.679 7.188 7.913 7.635 7,012 7.103 7.238 7.31 7.202 7.74 6,935

0,261 0.288 0.284 0.278 0.296 0.289 0.327 0.283 0.307 0.339 0.421 0,021 0,053 0.275 0.021 0,177 0.295 0.179 0.3 0.151 0.212 0.24 0,287 0,147 0,087 0,24 0,25 0.295 0.274 0.222 0.245 0.272 0.227 0.256 0.203 0.132 0.221 0.199 0.22 0,227 0,245 0.161 0.183 0.263 0.338 0.234 0.224 0.272 0,24 0,327

F 0 0 0 0 0 0.002 0 0 0 0 0 0 0.025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ba 0 0.104 0.104 0 0 0 0.009 0 0 0.078 0.035 0 0 0 0 0 0 0.077 0 0 0.008 0 0 0 0 0.05 0 0 0.042 0 0,025 0 0,067 0 0,05 0,11 0 0 0 0 0,042 0 0.042 0.034 0 0 0.034 0 0 0

iMn

Fe 0.006 0,003 0 0.004 0.044 0 0 0.001 0.003 0.033 0,051 0.001 0.009 0,001 0 0,029 0 0.004 0.007 0.023 0 0.001 0.003 0 0 0 0.013 0 0 0 0.025 0.013 0,004 0 0 0,025 0.01 0.007 0.015 0 0 0 0,029 0,05 0,029 0 0 0,02 0 0

P 0,153 0.119 0.169 0.145 0.145 0.113 0.192 0.189 0.162 0.185 0.181 0.129 0.109 0,084 0,053 0,157 0,189 0,167 0,162 0,149 0,212 0,164 0.133 0,164 0.121 0.134 0,185 0,146 0.165 0.18 0.229 0.156 0.19 0,18 0,146 0,154 0.124 0,166 0.153 0.162 0.137 0.121 0,185 0,092 0,174 0,089 0,182 0.162 0.168 0,148

0 0 0,011 0,001 0,002 0 0,001 0,01 0.009 0.006 0.004 0 0.008 0 0.008 0 0 0.007 0 0.001 0.017 0 0 0 0,002 0 0 0 0 0,023 0 0,012 0 0,009 0,007 0 0 0,002 0 0,007 0 0.007 0 0.004 0.001 0.01 0 0 0.012 0.006 0

43.599 43.127 42.886 42.808 42.185 42.677 41.671 42.08 42.312 42.231 42.38 47,524 48.264 46.006 46.382 45.813 45.402 45.111 44.471 45.755 45.796 45.394 45,797 44,871 44,905 45,434 45,182 45,237 45.094 46.297 45.816 45.471 46.062 45.646 45.804 45.903 46.379 45.393 45.573 45.885 45.073 45.509 45.027 45.322 45.088 46.058 45.596 45.299 45,327 45.313

Sum 92.653 91.615 91.184 90.859 89.637 90.387 88.633 89.399 89.765 89.892 90.074 102.159 103.628 98.375 99.6 97.166 95.872 96.428 94.073 96.982 96.88 96.019 96,844 95,442 95,819 96,274 95,605 95,701 95.448 98.009 97.193 96,185 97.71 96,675 97,215 97,953 98,149 96,322 96,943 96,985 95,414 96.51 95.46 95.765 95.429 97.346 96.635 95.889 96.105 95.827

u>

Feldspar Analyses

K-feldspar analyses Sample

Na

A!

Mg

Si

K

CI

ti

Ca

F

Ba

SMPW-3 SMPW-3 SMPW-3" SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

2.648 2.785 3.036 2.672 2.995 3.102 1.16 2.777 2.627 1.753 2.591 2.895 2.855 3.13 0.136 3.036 2.903 0.491 0.362 4.087

0.001 0.001 0.002 0 0 0.005 0.005 0 0.005 0 0.003 0 0.002 0 0.003 0,01 0.003 0.011 0.003 0

11.622j 1^538' " 11.619 11.655 11.672 11.498 11.64 11.517 11.575 11.804 11.754 11.541 11.629 13.209 7.165 11.647 11.614 8.936 11.114 11.85

29.13 28.691 28.676 28.713 28.154 28.812 28.335 27.803 27.588 27.665 26.985 27.613 27.771 26.387 7.972 27.963 27.682 33.916 30.455 31.403

0 0.005 0.009 0.02^ 0.011 0.004 0.102 0 0 0.013 0.007 0 0.001 0.007 0.001 0.003 0.002 0.033 0.117 0.002

8.126 7.758 7.22 7.793 7.071 7.347 9.067 7.234 7.33 8.478 6.885 6.99 7.035 6.934 6.133 6.908 6.881 9.656 12.836 5.859

0.402 0.239 0.265 0,232 0,31 0,221 0,09 0,215 0,23 0,085 0,287 0,298 0,304 0,257 0,028 0,294 0,345 0.053 0.124 0.214

0 0.014 0 0 0 0.007 0 0 0 0 0 0 0 0 0 0 0 0.071 0.025 0.014

0,093 0,017 0,025 0,059 0,092 0 0,085 0,008 0,109 0 0.017 0 0 0 0 0.092 0 0 0 0

SMPV-la SMPV-1a SMPV-1a SMPV-la SMPV-la SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-la SMPV-la SMPV-1a

0.333 0.297 0.224 0.2 0.249 0.285 0.329 0.511 0.318 0.549 0.22 0.336 0.369 0.265 0.47 0.284 0.325

0.008 0 0.002 0.002 0.024 0.016 0.002 0.008 0.007 0 0.043 0 0 0 0 0 0.008

10.976 10.064 10.131 9.845 9.94 9.455 9.959 9.826 9.292 10.198 10.104 9.926 9.986 10.09 9.973 10.01 10.299

29.74 30.377 30.38 30.108 29.985 31.577 30.536 30.948 31.507 30.46 30.214 29.837 30.321 30.21 30.173 30.095 29.544

0.006 0.117 0.027 0.035 0.015 0.021 0 0.017 0 0.002 0.014 0.002 0.056 0.158 0.12 0.213 0.048

12.833 13.091 13.048 13.58 13.095 12.653 13.069 12.631 12.145 12.667 13.329 13.02 12.896 12.843 13.024 13.19 12.923

0.071 0.026 0.034 0,022 0.071 0.039 0.035 0.029 0.021 0.126 0.222 0.025 0.017 0.053 0.169 0.1 0.097

0.016 0.022 0 0 0,011 0 0 0 0 0,007 0 0 0 0 0 0.002 0

0 0.018 0.096 0.07 0 0 0 0.026 0 0.113 0 0 0 0.166 0 0 0

SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b?

0.396 0.515 0.454 0.867 0.253 0.803 1.233 1.31

0.001

31.766 22.945 23.045 23.06 21.601 22.86 22.838 30.49

0.03 0.124

0

9.95 8.057 7.939 7.879 8.707 8.086 8.07 10.84

13.706 6.646 6.619 6.478 b.d. 5,661 6.536 b.d. 6.157 11.22

0.011 0.003 0.025 b.d. b.d. 0.024 b.d. b.d. b.d. b.d. 1.658 b.d. b,d. b.d. b,d. 0.029 b,d. b,d. 0.28 0

SMNA-4 SMNA-4

0.527 0.845

0.006 0

9.882 9.794

31.041 30.909

13.455 12.524

0.016 0.261

b.d. 0.035 b.d. b.d. b.d. b.d.

b.d. b.d. b.d. 0.04 b.d. 0 0.006 0.542

0 0

Mn

. . . .

0

0.245 n.a. n.a. n.a. n,a. n.a. n.a.

0.029 0.017

0.421 0.193

P

0

Sum

0.001 0 0 0 0,007 0.013 0.022 0.022 0.009 0.018 0.001 0.003 0 0 0.029 0

0.142 0.142 0.097 0.157 0.157 0.141 0.132 0.12 0.158 0.21 0.202 0.186 0.109 0.184 0.127 0,172 0,138 0,081 0,094 0,235

0,006 0,003 0,004^ 0 0 0,002 0 0,011 0 0 0,006 0,016 0 0,01 0,004 0,01 0 0 0,014 0,028

46,282 " 98,452 45,652 " 967848 45,671 '96,631 45,714 97.018 45,077 95.54 45,777 96.916 44,915 95.531 44,5 94.185 44,239 93.868 44,459 94.48 43,692 92.451 44,364 93,925 44,575 94,29 44.493 94,629 16.813 38,383 44,837 94.975 44,468 94,036 48,83 102,078 47,433 102,606 49,139 102.831

0 0,007 0 0,004 0,011 0 0,016 0 0.006 0,03 0,017 0 0 0,03 0,018 0 0.004

0,085 0 0,03 0,006 0,117 0,057 0,005 0,023 0,028 0,172 0,132 0,009 0,009 0 0,019 0,056 0,029

0,019 0,008 0 0,003 0,009 0 0.005 0 0.001 0.011 0.016 0.019 0 0.001 0.001 0 0

46.48 48.349 46.35 45.89 45,868 47,114 46,467 46,773 46,783 46,638 46,394 45,642 46,193 46,041 46,131 46,001 45,623

100.567 100,376 100,322 99,765 99,395 101,217 100,423 100,792 100.108 100.973 100.705 98.816 99.847 99.857 100.098 99.951 98.9

0,052 0.005 0,069 b.d. 0,138 b.d. b,d. b,d. 0,586 b,d. b,d. b,d. 0,055 b.d. 0 0,17 0

48,04 61,61 61,742 61,662 61,503 61,595 61,585 47,24

104.213 103.339 102.554 102.394 102.497 102,945 100,096 101,66

47,153 46,974

102,548 102,281

0.008 b.d. b.d. b.d. b.d. b.d. b.d.

0,12

^ Fe

0 " 0.003 0.007

0 0,12

0.012 0,1

0 0.002

Feldspar Analyses

K-feldspar analyses Sample

SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 " SMNA-4 SMNA-4

Na -

Mg

A!

SI

CI

k

Ti

Ca

F

Ba

0.794 ' 0.782" 0.749 ' ^686 0.505 0.41 0.57

0 0 0.007 0 0 0 0

9.79 '9.89 9.865 10.008 9.946 10.56 10.45

31.017 '31.847 31 285 31.359 31.111 30.65 30.77

0 0 0.004 0 0 0 0.01

12.956 L'3.0'78 13.07 13.285 13.458 13.29 12.01

0.006 0.032 0.044 0.036 0 0.03 0

0 0.012 0.019 1 0.006 0.01 0.69 0

0^029 0.023 0 0.027 0 0.07 0.01

SMNC-1? SMNC-1? SMNC-1?

1.3 1.44 1

0.02 0 0

10.43 10.57 10.8

29.51 29.79 30.04

0 0 0.01

11.02 10.92 11.98

0.32 0.43 0.46

0.05 0 0

SMNC-2

0.56

0.003

11.125

30.818

0

13.093

0.059

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

2.033 0.94 1.462 2.724 2.521 2.569 2.347 2.215 2.21 2.17 2.242 2.308 2.219 2.233 2.199 2.166 2.187 2.206 2.473 2.362 2.225 2.271 1.562 2.384 2.569 4.105 2.612 2.488 2.286 2.217 2.238 2.156 2.156 2.214 2.186 2.221

0 0.006 0 0 0 0 0.005 0 0.006 0.009 0.001 0.005 0.003 0 0 0.008 0 0 0.002 0 0 0 0 0.003 0.002 0.002 0.06 0 0 0.004 0.003 0 0.006 0.002 0.006 0

10.209 4.974 4.876 10.501 10.713 10.545 10.471 10.584 10.59 10.518 10.504 10.476 10.671 10.524 10.561 10.517 10.537 10.601 10.689 10.641 10.573 10.562 11.024 10.591 10.636 9.366 9.957 10.533 10.621 10.534 10.588 10.568 10.621 10.552 10.582 10.545

36.702 39.137 39.61 30.541 31.144 30.728 30.927 30.986 31.08 30.9 30.894 30.679 30.693 30.847 30.859 30.781 30.897 30.87 30.74 30.586 30.676 30.808 32.61 30.897 30.901 35.004 31.834 30.113 30.516 30.468 30.436 30.546 30.682 30.579 30.538 30.694

0.033 0.013 0.005 0 0 0.012 0.003 0.009 0 0 0 0 0.006 0 0.014 0 0.002 0 0.002 0.022 0.013 0.004 0.001 0.001 0.001 0.006 0.01 0.004 0.006 0 0 0.011 0 0 0.003 0

4.596 4.221 3.441 9.49 9.686 9.784 10.257 10.279 10.255 10.513 10.418 10.55 10.394 10.383 10.488 10.492 10.592 10.589 9.761 9.544 10.345 10.267 6.727 10.181 9.391 3.441 7.648 9.432 10.206 10.322 10.273 10.15 10.158 10.112 10.157 10.165

0.19 0.107 0.336 0.089 0.094 0.103 0.081 0.102 0.093 0.099 0.097 0.115 0.128 0.101 0.102 0.097 0.08 0.071 0.11 0.086 0.097 0.079 0.08 0.099 0.153 0.962 0.242 0.103 0.094 0.099 0.099 0.078 0.109 0.087 0.094 0.099

'

0.398 0.141 0.076 0'.2'41 0.508

Mn

P

Fe

0

Sum

0.004 0.002 0"018 0.004 0.002 0 0

0 0^158 0.089 0.134 0.026 0 0.01

0.08 0 0.07

0 0.02 0

0.37 0.26 0.03

0 0 0

45.85 46.33 46.79

98.95 99.76 101.18

0.048

0.06

0.028

0.173

0.008

47.983

103.958

0.02 0.043 0.084 0.02 0.007 0 0 0 0 0 0 0.016 0 0 0.02 0 0 0 0 0 0.02 0.007 0 0.016 0 0.054 0.081 0 0 0 0.002 0.011 0 0 0 0

0 0.026 0.026 0 0.084 0.025 0 0.068 0 0 0.042 0.042 0 0.085 0 0 0 0.059 0 0 0.059 0.068 0 0 0.017 0 0.101 0 0 0.059 0 0 0 0 0.008 0

0.003 0 0.011 0.015 0.001 0.004 0.034 0 0.013 0.023 0.006 0.008 0.032 0.017 0 0 0.027 0.006 0 0.007 0 0.021 0 0.027 0 0.014 0.001 0.006 0.016 0.004 0 0 0 0.003 0.014 0

0.164 0.088 0.182 0.078 0.078 0.103 0.074 0.129 0.078 0.065 0.096 0.047 0.115 0.066 0.052 0.106 0.088 0.06 0.056 0.064 0.08 0.071 0.107 0.06 0.034 0.257 0.447 0.08 0.059 0.08 0.106 0.056 0.072 0.042 0.05 0.065

0.019 0 0.003 0.01 0 0.012 0 0.013 0 0.007 0 0 0 0.01 0 0 0.011 0.007 0 0.004 0 0.008 0.017 0 0.004 0 0 0.008 0 0.009 0 0 0.002 0.013 0 0

52.7 50.295 50.92 47.116 47.902 47.361 47.533 47.658 47.766 47.547 47.505 47.294 47.455 47.451 47.532 47.4 47.583 47.566 47.451 47.144 47.294 47.43 48.966 47.613 47.554 50.844 47.876 46.549 47.158 47.02 47.05 47.083 47.305 47.132 47.101 47.263

106.669 99.85 100.956 100.584 102.23 101.246 101.732 102.043 102.091 101.851 101.805 101.54 101.716 101.717 101.827 101.567 102.004 102.035 101.284 100.46 101.382 101.596 101.094 101.872 101.262 104.055 100.869 99.316 100.962 100.816 100.795 100.659 101.111 100.736 100.739 101.052

0 O.OOL 0 0 0' 0 0

47.021 102.015 48.112 " 104.078 47.426 102.652 47.671 ' 103^457 47.294 102.86 47.62 103.31 47.02 100.86

s

Feldspar Analyses

K-feldspar analyses Sample

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

A!

Mg

Na

223A 2.153 2.212 2.431 2.543 4.125 0.64 6.108 5.683 1.733 2.262

0.002 0.004 0.003 0.003 0 0.006 0.305 0 0 0.017 0.01

SI

10.621 10.621 10.613 10.516 10.632 11.024 5.376 13.625 13.211 6.681 6.314

CI

30.643 30.491 30.542 30.421 30.476 30.895 34.958 29.437 28.952 37.554 38.658

K

0.002 0.002 0 0 0 0.004 0.008 0.004 0 0.015 0.009

Ca

10.186 10,055 9.917 9.654 9.476 5.427 2.996 1.697 1.024 5.149 3.331

Ti

0.093 0.107 0.115 0.116 0.118 0.862 0.446 2.197 3.428 0.211 0.442

F

0.002 0.029 0 0.014 0.023 0.002 0.077 0.029 0.079 0.066 0.016

iBa

0 0.042 0.042 0.034 0.034 0 0 0 0.016 0.077 0

Mn

Fe

0 0 0 0.003 ^ 0 0 0.024 0 0 0 0.004

P

0.092 0.1 0.084 0.084 0.072 0.406 1.06 0.323 0.342 0.263 0.166

0

0.006 0 0 0.008 0 0.009 0.001 0.02 0 0.008 0.003

Sum

47.296 47.071 47.092 46.915 47.074 48.029 46.189 49.146 48.437 50.577 51.375

101.176 100.675 100.62 100.199 100.448 100.789 92.08 102.586 101.172 102.351 102.59

u> O

Pyroxene, amphibole and biotite analyses

Pyroxene analyses CI lb d

Na 0.3 0.27 o;27 " 0.29 0.27 0.26 0.28 0.29 0.28 0.3 0.29 0.5 0.33 0.33 0.29 0.32 0.27 0.31 0.29 0.28 0.24 0.17 0.22 0.23 0.21 0.22 0.22 0.2 0.22 0.23 0.22 0.23 0.19 0.2 0.22 0.19 0.23 0.17 0.22 0.27 0.22 0.2 0.28

l o o

Comments

cpxl ri^rim cpx1 n mear rim cpx1 i Tin cpxl iriin cpx1 inlin cpx1 ni near core cpxl nJ near core cpx1 cflcore area cpx2, r rim cpx2, r| near rim cpx2, in in cpx2, n near core cpx2, ri near core cpx2, « in cpx2. J in cpx2, J in cpx2. J in cpx2. n in cpx2, i{ In cpx2, rj near rim cpx2, r rim cpx2, nhiZ rim cpx2, HhiZ near rim cpx2, HhiZ in cpx2, HhiZ in cpx2, HhiZ in cpx2, HhiZ in cpx2, HhiZ near cor cpx2, HhiZ core cpx2, HhiZ core plagtoaact rim plagtoaact nrm plagtoaact in piagtodact in plagtoaact ncr piagtodact cor plagtoaact cor cpx1, HhiZ rim?cpx? cpx1. ilin cpx1, ilin cpxl. nin cpxl, nin cpxl. i|in

i

Mineral!

O O!-^

Sample # SMCA-8 SI^CA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

0.02 0.01 0.01 0 0.01 0.01 0.01 0 0 0.01 0 0.01 0 0.01 0.01 0 0 0.01 0.01 0 0 0 0 0.01 0.01 0 0.01 0 0 0.01 0.01 0 0 0.03 0.01 0.01 0 0.01 0

Mg 8.33 8.47 8,77 8743 8.78 8.75 8.64 8.52 8.7 8.47 8.65 7.85 8.27 8.45 8.45 8.57 8.64 8.57 8.54 8.33 8.79 8.87 8.92 8.91 8.81 8.62 8.8 8.73 8.75 8.85 8.98 8.82 8.97 9.05 9.2 9.13 9.12 9.26 8.65 8.28 8.9 9.05 8.31

Al

0.526 0.466 0.313 0.472 0.31 0.456 0.437 0.447 0.768 0.556 0.54 0.968 0.966 0.831 0.819 0.709 0.571 0.541 0.517 0.543 0.291 0.32 0.327 0.403 0.452 0.44 0.346 0.361 0.39 0.401 0.472 0.446 0.447 0.383 0.4 0.379 0.389 0.285 0.167 0.55 0.39 0.387 0.588

Si

K

Ti

24.25 24.69 24.86 24.64 24.58 25.21 24.42 24.31 24.4 24.49 24.43 24 24.15 24.29 24.38 24.39 24.49 24.53 24.44 24.49 24.83 24.63 24.86 24.61 24.69 24.64 24.67 24.74 24.68 24.6 25.05 24.69 24.52 24.66 24.66 24.84 24.83 25.2 24.99 24.45 24.68 24.67 24.65

0.02 0.01 0 0 0.01 0 0 0 0.05 0.01 0 0 0 0 0 0.01 0 0 0 0 0.01 0.02 0.02 0.01 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0.05 0.01 0 0.01 0 0

0.083 6.il8 0.076 0.085 0.105 0.103 0.103 0.096 0.1 0.141 0.138 0.038 0.116 0.114 0.165 0.159 0.163 0.083 0.085 0.08 0.049 0.063 0.094 0.072 0.112 0.047 0.054 0.103 0.083 0.067 0.081 0.094 0.094 0.119 0.083 0.092 0.072 0.022 0.052 0.118 0.078 0.081 0.136

Fe 6.223 6.756^ 5.946 6.619 6.144 6.398 6.684 6.348 6.551 6.468 6.764 6.616 7.507 7.218 7.018 6.611 6.431 6.692 6.79 6.858 5.704 6.014 5.681 5.904 6.128 6.399 5.853 6.17 6.12 6.223 6.057 6.09 5.713 5.743 5.82 5.691 5.83 5.977 5.141 6.893 6.075 5.901 7.092

Ca

15.4 15.3 15.3 15.3 15.3 15.1 15.2 15.2 15 15.3 15.2 15.5 14.7 15 15 15.3 15.2 15.3 15.3 15.1 15.8 15.5 15.7 15.5 15.4 15.3 15.6 15,3 15.3 15,3 15,3 15,6 15,7 15,6 15,7 15,7 15,7 13,9 16.9 16 15.7 15.7 15.2

Page 1

Mn 0.85 0.86 0.97 0.76 0.91 0.76 0.78 0.74 0.57 0.54 0.42 0.47 0.6 0.56 0.53 0.45 0.48 0.62 0.84 0.74 0.89 0.75 0.68 0.7 0.65 0.78 0.6 0.81 0.82 0.79 0.65 0.63 0.51 0.5 0.48 0.46 0.49 0.59 0.62 0.67 0.58 0.44 0.74

P

0.01 0 0.01 0 0 0 0 0.01 0.01 0 0 0 0 0 0 0.01 0.03 0.01 0 0.01 0.01 0 0 0 0 0 0 0.01 0 0.01 0.03 0.01 0.01 0.01 0.01 0 0 0 0 0 0 0.02 0.02

F 0 0.423 0 0.423 0 0 0.352 0 0 0 0.7 0.071 0.694 0 0.629 0 0.772 0.071 0 0 0.782 0 0.428 0.071 0 0.354 0 0.142 0 0.284 0,425 0 0,143 0,071 0.426 0.779 0.142 0 0 0 0.637 0 0.701

Cr

-

Co

Ni

Cu

Zn

Sum

98.01 99.72 99.13 99.24 98.83 100.2 99.06 97.9 98.87 98.57 99.14 97.86 99.23 99.21 99.42 98.91 99.08 99.1 99.24 98.7 99.67 98.81 99.48 98.89 99.09 99.01 98.57 99.09 98.8 99.13 100.1 99.26 98.69 98.9 99.51 99.66 99.61 98.09 99.54 99.74 99.6 99.09 100

Pyroxene, amphibole and biotite analyses

Pyroxene analyses Sample #

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Mineral Comments cpxl,r near core cpxl,r near core

cpxl, c core area cpxl,c core area cpxl,c core area cpxl,c core area cpx bg ncr, rm2ab cpx bg core

Na CI Mg 0.3 0.01 8.4 0.32 0 8.16 0.32 0 8.5 0.21 0.01 8.88 0.24 0.01 9.03 0.21 0 9.16 0.25 0 8.95 0.22 0 8.75

A!

0.588j 0.63 0.55^ 0.447 0.505 0.388 0.386 0.422

Si K Fe Ti Ca Mn P 24.22 0.01 0.069^ 6.861 15.4 0.73 0.02 24.37 0 0.103 7.245 15.1 0.72 0 24.77 0.02 0.134 6.69 15.2 0.73 0.01 24.61 0 0.126 5.955 15.7 0.45 0 24.72 0 0.128 5.932 15.3 0.45 0.01 24.79 0 0.065 5.668 15.7 0.46 0 24.3 0 0.084 5.23 15.9 0.73 0.02 23.99 0 0.12 6.097 15.4 0.67 0.01

Cr

Co

Ni

Cu

Zn

Sum

0 0.211 0 0 0.566 0 0.117 0

98.69 98.91 99.64 98.92 99.36 99.13 98.09 97.44

0

0.027

98.01

1

SMCM-6a

cpx?1 hiZ in

0.1

SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

cpx?1 rim cpx?1 near rim cpx?1 rim cpx?1 near rim cpx? 1in cpx? 1in cpx? 1in cpx? 1in cpx? 1in cpx? 1in cpx?1in cpx? 1in cpx? 1 in cpx?1in cpx?1in cpx?1near rim cpx? 1 near rim cpx? rim cpx? in cpx? in

0.2 0.23 0.48 0.22 0,26 0.23 0.22 0.22 0.26 0.24 0.24 0.22 0.21 0.21 0.2 0.22 0.11 0.15 0.21 0.24

0 0.01 0.02 0.42 0 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 0 0.01 0.04 0 0 0.04 0

8.8 8.5 9.2 9.49 8.75 8.79 9.05 8.86 8.69 8.64 8.7 8.81 8.82 9.5 9.39 8.55 9.73 9.58 9.11 9.22

0.16 0.263 1.005 0.752 0.254 0.204 0.195 0.193 0.214 0.194 0.237 0.298 0.464 0.172 0.638 0.928 0.125 0.167 1.238 0.662

25.05 25 27.83 24.85 25.44 25.31 25.36 25.7 25.02 25.29 25.47 25.49 25.76 25.34 25.36 24.57 25.6 25.53 25.21 25.17

0.01 0.02 0.28 0.04 0 0.01 0 0 0 0 0.01 0.01 0 0.01 0.02 0.01 0.01 0 0.03 0

0.062 0.088 0.077 0.094 0.04 0.009 0.024 0.015 0.046 0 0.042 0.081 0.064 0.038 0,15 0.117 0.02 0,031 0.088 0.128

4.799 5.224 3.592 5.496 5.231 4.775 4.914 4.891 5.095 5.131 5.067 5.499 6.138 3.18 4.013 5.661 3.435 3.903 5.34? 4.239

16.9 16.7 13.9 13.7 16.8 16.9 16.8 17 16.5 16.6 16.7 16.6 15.8 17 16.6 16.4 17 16.6 14.2 16.5

0.65 0.7 0.36 0.65 0.65 0.68 0.7 0.76 0.78 0.67 0.72 0.55 0.49 0.67 0.37 0.31 0.43 0.54 0.48 0.44

0.01 0.01 0.01 0.25 0 0.02 0.02 0.03 0 0 0.01 0.02 0 0 0 0.01 0.01 0.01 0.02 0.01

0 0 0.428 2.262 1.065 0.36 0 0 0 0.996 0.715 0.072 0.142 0 0 0 0.218 0 0 0.787

99.5 99.61 102.5 100.1 101.5 100.4 100.8 101.4 99.45 100.5 101 101.2 101.8 99.39 100.5 99.6 100.3 100.1 99.24 100.5

SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la

hbi? hbl? hbi? hbl? hbl? small h rim small h rim small h core hbl normal hbl normal hbl? remnant at acti

0.51 0 0.62 0 0.48 0 0.39 0 0.56 0 0.62 0.01 0.59 0.01 0.46 0.01 0.6 0 0.43 0 0.42 0

7.95 8.13 7.51 7.94 7.15 7.98 7.53 8.02 8.23 7.69 8.03

0.34 0.205 1.665 0.739 1.557 0.362 1.136 0.557 0.185 0.928 0.463

25.24 25.29 23.97 24.75 23.92 25.17 24.47 24.89 25.42 24.52 25.02

0.02 0 0 0 0.02 0.08 0.1 0.01 0 0 0

0.084 0.042 0.315 0.12 0.437 0.074 0.275 0.189 0.064 0.23 0.141

7.273 7.578 7.762 7.263 8.383 7.248 7.678 7.015 7.22 7.742 6.974

16.1 16 16.4 16.6 16.1 15.7 15.9 16.1 16 16.4 16.5

0.83 0.73 0.42 0.66 0.63 1.05 0.72 0.85 0.77 0.56 0.83

0.06 0.01 0 0 0 0 0.01 0.01 0 0 0

0 0.032 0 0 0.038 0 0.007 0.024 0.003 0.046 0

101.8 102 101.5 101.6 101.6 101.5 101.4 101.2 102 101.6 101.7

0 8.94

0.129 24.46

0 0.036 5.185 16.5 0.53

Page 2

Pyroxene, amphibole and biotite analyses

Pyroxene analyses Sample #

CI 0.01 0 0 0.01 0.01 0 0.01 0.01 0.01 0 0 0 0 0 0 0 0

Mg 8.01 4.66 8.71 7.67 6.64 7.65 8.38 8.17 7.83 0.48 7.9 7.66 7.87 6.87 7.45 7.81 7.64

A1 0.466 0.559 0.322 0.18 5.265 2.044 0.444 0.18 0.761 0.24 0.549 1.576 0.635 2.543 1.218 0.285 0.192

cpxl in cpxl in hiZ?area cpxl in hiZ?area cpxl core cpxl core cpxl in cpx1 in cpxl in cpxl in cpx1 in cpxl in near rim cpxl rim cpxl rim cpxl rim ovrgrth tit2 end in cpx cpx2 core near t cpx2 in cpx2 in

0.71 0 0.62 0 0.53 0.01 0.69 0 0.54 0.01 0.07 0 0.59 0 0.75 0

7.53 7.67 6.79 7.69 7.62 7.78 7.62

0.646 0.33 1.64 0.248 0.24 0.183 0.261

cpxl cpx1 cpx1 cpxl cpxl cpxl

0.38 0.38 0.34 0.29 0.23 0.22

Mineral

Comments

SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-1 SMPW-1 SMPW-1

hbi? rim hbl? rim, close to ac act-tibi rim to core to c act-hbl rim to core to c act-hbi rim to core to c act-hbl rim to core to c act-hbl rim to core to c act-hbl rim to core to c act-hbl higher z contac nearby rim nearby core nearby core nearby rim nearby extreme of the cpx? contact mt2b acti ? rim acti ? in

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a

Na 0.52 0.32 0.68 1.17 0.52 0.63 0.66 0.54 0.54 0.06 0.39 0.47 0.59 0.32 0.42 0.83 1

Si 25.13 15.26 26.54 25.33 21.38 23.99 25.45 25.47 24.83 3.103 24.98 24.04 25.2 22.79 23.85 24.92 24.96

K 0.06 0.03 0.01 0.01 0.01 0.01 0.01 0 0.01 0.4 0 0.01 0.03 0.02 0 0 0

Ti 0.129 0.104 0.027 0.014 0.052 0.239 0.027 0.058 0.157 0.048 0.178 0.279 0.1 0.588 0.22 0.079 0.057

Fe Mn Ca 7.166 16,1 0.85 5.144 25,9 0.68 7.366 15.6 1.14 8.158 15,3 0.51 6.563 15.5 0.9 7.811 15,4 0.71 7.337 15,8 0.69 7.401 16.2 0.71 7.717 16.2 0.63 4.814 25.4 0.63 7.422 16.5 0.8 7.686 16.5 0.42 7.27 15.8 0.68 8.807 16.3 0.36 7.38 16.4 0.49 7.186 15.7 0.61 7.592 15.3 0.7

P 0.01 0,02 0 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0 0.02 0.01 0.02 0.01

0 0.01 0 0 0.004 0.034 0.023 0.01 0.059 0 0 0.018 0 0 0.129 0.156 0.073

101.7 85.92 105.7 101.5 98.91 101.7 102.6 102.4 102 51.1 102.1 101.7 101.5 101 99.72 100.2 100.1

7.91 7.295 8.211 7.196 7.396

0 0.01 0.01 0.01 0.03 0.02

0.05 0.034 0 0.067 0.059 0.185

F^

Cr

Co

Cu

Zn

Sum

1

traverse traverse traverse traverse traverse traverse

6.42 0.66 0 7.54 0.57 0.01 6.48 0.54

0.01

0.6

0 0 0

6.72 6.71

0.02 0.8 0.52 0.01 0.51 0 0.51 0 0.49 0.01

6.22 8.11

0

8.52 8.75

0 0 0 0 0

7.65

7.66 7.57 7.54

8.58 8.89 9.14 9.29

23.94 24.08 23.08 23.85 24.09 3.8 24.09 2.524 22.37 0.322 23.66 2.175 22.25 2.03 22.41 1.947 22.47 1.896 11.88 0.668 24.41 0.523 23.71 0.504 23.98 0.559 23.71 0.559 23.84

0.115 0.143 0.383 0.588 0.528 0.44

0.03 0.01 0.01 0 0 0.01 0.01 0.01 0.01

0.064 0.048 0.295 0.066 0.03 0.03 0.089 0.295

0.066 0 0.453

0.01 0.02 0.09 0.02 0,02

0.422 0.467 0.038 0.084 0,127 0 0.087 0.01 0,13 0.01 0.116

15.2 0.66 15.5 0.98 15.8 0.6 15.5 0.96 15.6 1.08 5.511 21.6 0.8 7.359 15.5 1.03 8.145 15.8 0.43 7.234 15.3 1.04 8.26 16 0.59 8.162 15.7 0.57 7.923 15.8 0.59 7.759 15.5 0.45 7.217 14.2 0.67 7.185 15.7 0.78 6.838 15.8 0.78 6.852 16 0.8 6.804 16.1 0.8

25.56 0.04 0.027 6.133 25.53 0.01 0.023 6.025 25.33 0 0.091 6.37 24.83 0 0.107 7.16 25.06 0 0.14 6.619 25.16 0 0.127 6.291

0

0

0.02 0.02

0.085 0.051 0.034

98.3 98.18 98.44 97.53 98.2 60.08 98.14 97.96 96.74 97.78 97.64 97.55 71.83 98.2 97.58 97.84 97.54 97.87

16.8 0.51 0.01 16.5 0.53 0.01 16.2 0.57 0.01 15.3 0.6 0.01 15.6 0.45 0 15.7 0 0.5

0.013 0.016 0.046 0.011 0 0

101.7 101.5 101.4 100.9 101.2 101.3

Page 3

0 0 0 0

0 0.042

0

0 0 0 0

0.02 0.02

0.008 0.083

0.01

0

Pyroxene, amphibole and biotite analyses

Pyroxene analyses Sample #

SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2b SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b? SMNA-2b?

Mineral

Comments

cpxl

traverse cpx1 traverse cpxl traverse cpx1 traverse cpx1 traverse cpxl traverse cpxl traverse cpxl traverse cpx1 traverse cpxl traverse cpx1 traverse cpxl traverse cpx1 traverse cpxl traverse cpx2 next to cpxl cpx2 next to cpxl cpx2 next to cpx1 cpx2 next to cpxl cpx2 next to cpx1 cpx2 next to cpx1 cpx2 next to cpx1 cpx2 next to cpxl cpx2 next to cpx1 cpx2 next to cpx1 cpx2 next to cpx1 cpx! (u act? after cpx? cpx! (u act? after cpx? cpx! (u act? after cpx? cpx! (u act? after cpx? near core area cpx cpx intermediate ar act or f not bio as susp cpx-rim on tit outside p cpx, hz relict near plag cpx, Iz repic near plag^^ late cpx, near plag4 rin late cpx, near plag4 in late cpx, near plag4 in late cpx, near plag4 in late cpx, near plag4 in late cpx, near plag4 rin late cpx, near plag4

Na

CI

Mg

0.25 0.24 0.27 0.25 0.2 0.23 0.22 0.21 0.22 0.25 0.27 0.48 0.29 0.31 0.38 0.12 0.27 0.25 0.17 0.24 0.23 0.21 0.24 0.25 0.21 0.3 0.22 0.35 0.29 0.26 0.2 0.32 0.47 0.49 0.22 0.31 0.39 0.47 0.5 0.44 0.56 0.51

0 0 0 0.01 0 0 0 0 0.01 0 0 0.08 0.01 0 0.06 0 0 0.01 0 0 0.01 0.01 0 0.01 0 0.01 0 0 0 0 0 0.01 0 0 0.01 0 0 0.01 0 0 0.01 0.02

9.06 8.92 8.96 9.25 9.32 9.15 9.25 9.17 9.17 9.07 9.12 8.97 8.65 8.81 8.68 8.54 8.96 8.95 9.24 8.98 9.01 9.3 9.1 9.04 8.59 8.61 9.15 8.86 8.73 9.1 9.87 8.78 4.07 4.1 7.71 6.11 6.69 8.46 8.15 5.84 3.98 4.11

A1

0.526 0.604 0.617 0.494 0.444 0.452 0.438 0.599 0.502 0.552 0.531 1.219 0.265 0.258 0.283 0.106 0.743 0.557 0.136 0.076 0.403 0.392 0.559 0.515 0.142 0.561 0.415 0.244 0.058 0.733 0.607 0.068 2.31 2.84 0.4 0.4 1.85 0.81 0.87 2.01 2.87 2.68

Si

K

25.01 24.96 24.92 25.29 25.06 25.13 25.25 25.05 25.16 24.92 25.05 24.62 25.36 25.36 25.34 25.45 24.89 25.2 25.47 25.54 25.07 25.28 24.9 25.03 25.45 25.03 25.11 25.5 25.61 24.9 25.07 25.64 21.71 21.07 24.83 24.24 22.9 24,53 24.19 22.42 21.12 21.11

0 0 0 0 0 0 0 0 0 0.01 0.01 0.07 0 0 0.05 0.01 0 0.01 0.01 0.01 0 0.01 0 0 0.01 0.01 0 0 0 0.01 0.01 0 0.02 0.01 0.01 0.01 0 0.02 0 0 0.03 0.01

Ti

Fe

0.104" 6.637 0.11 7.077 0.141 6.8561 0.193 6.568 0.167 6.409 0.125 6.333 0.115 6.393 0.18 6.397 0.128 6.365 0.131 6.697 0.11 6.766 0.256 7.096 0.041 5.657 0.062 6.039 0.073 5.894 0.024 6.005 0.154 7.061 0.11 6.825 0.047 5.927 0.013 5.892 0.086 6.732 0.152 6.375 0.151 6.661 0.115 6.901 0.023 5.945 0.11 7.072 0.085 6.574 0.023 6.211 0.009 5.832 0.139 6.553 0.171 6.169 0.021 5.801 0.53 13.29 0.77 13.21 0.03 6.64 0.06 9.56 0.54 8.32 0.2 5.71 0.21 6.25 0.44 10.02 0.61 13.26 0.62 13.4

Ca

Mn

15.5 15.4 15.5 15.4 15.6 15.8 15.7 15.7 15.5 15.6 15.7 14.6 16.8 16.4 16.6 17.5 15.4 15.6 16.4 16.6 15.5 15.6 15.6 15.4 17 15.5 15.6 16.4 17.1 15.4 14.7 16.8 16 16.1 17.4 16.9 16.8 16.6 16.6 16.5 15.9 16

0.47 0.51 0.44 0.51 0.5 0.53 0.52 0.47 0.45 0.42 0.44 0.5 0.56 0.47 0.44 0.27 0.44 0.48 0.44 0.69 0.63 0.55 0.45 0.46 0.7 0.71 0.59 0.49 0.46 0.59 0.52 0.52 0.41 0.33 0.26 0.58 0.26 0.36 0.34 0.31 0.35 0.38

1

Page 4

P 0.01 0.01 0.01 0.01 0.01 0.01 0 0.01 0.01 0 0.01 0 0.06 0.01 0 0.01 0 0 0.02 0.01 0.01 0.01 0 0.01 0 0 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0.01 0 0.01 0.02 0.01 0.01 0.01

F

0 0 0 0.018 0.022 0.018 0 0 0.011 0 0 0.144 0 0 0.041 0.002 0 0 0 0.015 0 0 0 0 0 0 0 0 0 0.037 0.019 0 0 0.1 0.04 0 0.06 0 0 0.03 0 0

Cr

Co

Ni

Cu

Zn

Sum

100.9 101.2 101 101.7 101.2 101.2 101.5 101.3 100.9 100.9 101.5 101.5 101.2 101.2 101.3 101.6 101.3 101.5 101.6 101.7 101 101.5 101 101.1 101.6 101.2 101.2 101.9 101.8 101.2 101 101.6 99.11 99.3 100.3 99.96 99.56 100.1 99.72 99.22 98.78 98.91

Pyroxene, amphibole and biotite analyses

Pyroxene analyses

SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1? SMNC-1

cpx lam., difficult cpx lam., difficult cpx+lam, cpx rim cpx+lam, cpx in cpx+lam, cpx in, lam z cpx+lam, cpx in, lam z cpx+lam, cpx in, lam z cpx or epi, near plagi cpx or epi, near plaqi cpx?contact w mt2

Na CI Mg 0.54 0 8.58 0.63 0.01 8.69 0.18 0 0.48 0 4.8 0.6 0.01 8.61 0 8.67 0.55 0.48 0 8.66 0.47 0.01 4.04 0.27 0 7.51 0.53 0 4.26

Ti Al Si ^ K 0 0.23 0.9 24.13 1.09 ^3.98 0 0.28 0.15 24.47 0 o.oT 2.48 21.31 0 0.73 0.92 24.05 0 0.23 1.09 23.68 0 0,23 1.02 23.84 0 0.26 2.46 20.67 0.01 0.68 0.13 24.74 0 0,01 2.697 21.34 0 0.502

Fe 6.08 6.55 7.67 11.56 5.93 6,83 7.03 13.09 7.18 12.4

Mn Ca 15.3 0.36 14.8 0.42 i7.r 0.28 16 0.31 15.6 0.34 14.7 0.41 14.6 0.43 16.2 0.4 17.3 0.33 16.1 0.34

P 0.01 0.01 0 0.01 0,01 0.01 0.02 0.27 0.01 0.01

SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2

cpxl rim repi ab cpxl in cpxl irfgrn? cpx2 repI by grn cpx2 repl by grn cpx2 r^grn? loZ rim amphi hil zon grn? hil zon grn? hi3 base of lo3 cpx2 r« grn? cpx2 r« grn? cpx2 in cpx2 in grn2 repl cpx2 grn2 loZ grain grn2 hi grn? grn2 hi grn? grn2 loZ area grn2 midZ rim grn2 midZ core cpx3 ign w exsol

0.04 0.03 0.35 0.18 0,13 0.43 0.15 0.4 0.11 0.09 0.35 0.4 0.25 0.08 0.04 0.08 0.49 0.47 0.08 0.09 0.08 0.66

0.082 0.047 2.277 0.866 0.174 2.711 0.353 3.515 2.388 0.576 3.658 2.936 0.405 0.108 0.134 0.096 2.705 2.65 0.086 0.125 0.118 0.942

5.053 4.931 11.44 7.264 5.429 12.4 7.36 12.93 7.454 6.531 12.38 12.74 7.836 4.758 5.337 6.892 12.87 12.69 4.891 8.622 8.121 6.87

17.8 18 16.7 17.6 17.7 16.4 17.5 16.5 17.4 17.8 16.6 16.5 17.4 17.9 17.8 17.7 16.4 16.4 17.9 17.6 17.7 15.5

0 0 0 0 0.01 0 0 0 0.01 0 0 0 0 0 0 0 0.01 0 0.01 0.01 0 0

Sample #

Mineral

Comments

7.2^

0.01 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0.01 0 0.01 0 0.01 0 0.01

8.44 8.69 5.27 7.56 8.32 4.59 7.21 4.24 6.05 7.53 4.55 4.54 6.99 8.68 8.3 7.68 4.6 4.64 8.56 6.77 6.95 8.4

25.03 25.26 22.13 24.12 25.03 21.3 24.29 20.68 23.46 24.08 20.49 20.92 24.48 24.82 24,82 24.54 21.42 21.39 24.85 24.02 24.39 24.17

0 0 0 0 0 0.01 0.04 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0.01 0

0.044 0.021 0.59 0.237 0.037 0.73 0.084 0.836 0 0 0.694 0.624 0.025 0 0.023 0.037 0.411 0.451 0.007 0.02 0.043 0.258

Page 5

0.5 0.67 0.35 0.41 0.32 0.34 0.6 0.29 0.49 0.52 0.24 0.3 0.47 0.51 0.76 0.49 0.27 0.33 0.65 0.42 0.57 0.39

F

Cu

Zn

Sum 98.35 98.78 99.09 97.78 98.55 98.12 98.42 97.92 99.83 98.28

0 0.044 0.016 0.093 0 0.032 0 0.048 0.042 0 0.032 0.081 0 0 0.043 0 0.056 0 0 0.034 0.059 0

99.91 101.1 100.4 100.9 100.1 99.51 99.67 100 99.51 99.15 99.42 99.33 100.2 99.63 100 99.84 99.8 99.49 99.9 99.35 100 99.81

L Cr

Co

Ni

0 0 0 0 0 0 0 0.01 0 0

Pyroxene, amphibole and biotite analyses

Amphibole analyses Sample #

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mineral

Comments

cpxl cpxl cpx2 rim to kspar alt cpx2 rim to kspar alt cpx2 in cpx2 in cpx2 in unknov possibly bio cpx3 cpx3 cpx3 rim cpx3 slightly higher / cpx4 cpx4 rim too cpx4 in cpx4 in cpx4 core cpx4 core cpx4 ir( in cpx4 ir In cpx4 in near rim cpx4 rim cpx, "g rim cpx, "g near rim cpx, "g In cpx, "g core cpx, "g in cpx, "g rim hbl relict hbl relict hbll loZ nearQ hbll loZ in hbll loZ near hi hbll hIZ near lo hbll hIZ near co hbll loZ near co hbll loZ near co hbll hiZ in hbll hiZ in hbll hiZ rim hbll hiZ offplec cpxl in cpxl in

Na 0.72 0.72 0,54 0.42 0.66 0.69 0.68 0.49 0.73 0.48 0.54 0.28 0.52 0.3^ 0.21 0.2 0.18 0.16 0.18 0.63 0.65 0.69 0.52 0.54 0.64 0.69 0.52 0.64 0.24 0.18 0.22 0.24 0.29 0.8 0.82 0.7 0.74 0.75 0.46 0.26 0.57 0.16 0.17

CI 0.09 0.08 0.09 0.07 0.09 0.09 0.08 0.08 0.12 0.08 0.09 0.03 0.07 0.04 0 0.01 0.01 0 0.01 0.09 0.11 0.11 0.1 0.1 0.1 0.08 0.08 0.08 0.08 0.02 0.02 0.02 0.03 0.12 0.12 0.08 0.12 0.1 0.1 0.02 0.11 0.01 0

Mr 10.48 10.6^ 11 11.22 10.77 10.79 10.73 10.98 10.19 10.93 10.96 9.191 10.9 11.61 9.824 9.661 9.611 9.655 10.09 11.01 10.96 10.88 11,24 11.08 10.86 10.86 11.37 10.85 5.415 9.584 10.47 10.85 10.74 9.458 9.267 9.721 9.417 9.254 9.073 7.517 9.967

A1

1.784 i.845 1.314 1.062 1.609 1.643 1.64 1.51 2.195 1.372 1.573 2.162 1.615 0.86 1.718 1.875 1.421 1.551 1.497 1.619 1.699 2.005 1.24 1.316 1.623 1.752 1.171 1.742 1.499 0.687 0,629 0.64 0.682 2.216 2.185 2.026 2.207 2.054 1.937 1.804 1.558 8.84 1.443 8.94 1.522

Si

K

23.8 23.8 24.7 24.8 24.3 24.1 24.3 24.6 23.5 24.7 24.6 23.8 24.8 25.5 24.8 24.7 24.9 24.6 25 24.5 24.6 24.4 24.7 24.7 24.5 24.1 25 24.5 12 21.9 23.1 23.5 23.3 21.6 21.2 21.8 21.4 21.6 18.6 13.8 21.5 23.3 22.6

0.21 0.21 0.22 0.15 0.22 0.21 0.21 0.16 0.34 0.19 0.21 0.13 0.22 0.1 0.07 0.06 0.07 0.06 0.03 0.19 0.2 0.28 0.19 0.19 0.2 0.19 0.14 0.23 0.13 0.03 0.04 0.05 0.05 0.3 0.29 0.24 0.26 0.28 0.28 0.08 0.19 0.08 0.07

Ti

0.45 0.33 I 0.3 0.23 0.34 0.41 0.36 0.28 0.62 0.38 0.35 0.02 0.3 0.12 0 0.14 0.02 0.05 0.07 0.39 0.35 0.52 0.32 0.27 0.37 0.35 0.2 0.52 0.27 0.04 0.07 0.04 0.06 0.6 0.63 0.48 0.56 0.53 0.57 0.09 0.36 0.13 0.11

Fe 6.888 6.668 6.49 6.566 6.96 7.165 7.108 6.542 7.796 6.908 6.738 9.041 6.708 5.633 8.32 8.422 9.083 8.007 7.734 7.186 7.122 7.421 6.967 7.058 7.394 7.282 6.539 7.043 5.295 5.258 4.916 4.651 4.687 6.39 6.166 5.932 6.361 6.245 5.996 5.911 6.014 6.604 6.425

Ca 7.4^ 7.414 8.097 8.049 7.745 7.744 7.901 8.255 8.13 8.206 8.129 8.684 8.343 8.45 8.801 8.82 8.905 8.948 8.954 8.013 7.911 7.997 7.78 7.58 7.598 7.581 7.81 7.84 6.834 7.818 7.752 7.615 7.569 6.97 6.995 7.234 7.218 7.002 6.663 7.292 7.107 7.74 7.88

Mn

0.48 0.48 0.57 0.49 0.53 0.51 0.53 0.5 0.47 0.47 0.5 0.38 0.37 0.38 0.3 0.34 0.38 0.37 0.31 0.45 0.44 0.45 0.63 0.6 0.55 0.51 0.58 0.57 0.37 0.19 0.33 0.33 0.4 0.44 0.42 0.38 0.4 0.39 0.42 0.27 0.39 0.26 0.23

P

0 0 0 0.01 0.03 0 0 0.01 0 0 0 0 0.01 0.01 0.01 0.01 0 0 0.01 0 0 0.01 0 0 0 0 0.01 0 0 0.03 0 0.01 0.01 0 0.01 0.01 0.01 0 0 0 0.01 0 0.02

Co F 0.179 0.42r 0.344 0.213 0.285 0.284 0.204 0.181 0.203 0.18 0.246 0.016 0.246 0.099 0.122 0.138 0.161 0.204 0.188 0.374 0.301 0.236 0.31 0.374 0.243 0.364 0.3^ 0.237 0 0 0 0 0 0 0 0.662 0 0.331 0 0 0 0 0

Ni

Cu

Zn

Sum

93.79 93.8 95.72 95.37' 95.45 95.47 95.78 95.73 96.05 96.15 96.22 95.16 96.64 95.97 96.38 96.69 96.98 95.28 96.37 96.83 96.79 97.79 96.3 95.91 96.23 95.54 96.23 96.68 55.43 82.38 86 87.13 86.62 87.17 85.68 87.34 86.65 86.22 78.04 64.17 85.39 87.49 86.2

UJ on

Pyroxene, amphibole and biotite analyses

Amphibole analyses Sample #

SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mineral cpx1 in

Comments

cpxl 'core' cpx1 in cpx1 near rim cpxl rim

Na CI ^Mg ^ Al Si K 0.15 0.04 ^8.151 1.307 21.1 0.07 0.12 0 8.581 0.71 23.4 0.06 0.17 L 0.01 9.206 1.333 23.3 0.06 0,17 0 9.359 1.524 23.3 0.09 0.16 0 9.454 1.415 23.4 0.08

Fe 5.925 7.374 6.439 6.369 6.386

Ca 6.917 7.825 7.826 7.888 7.827

Mn

0.08 0.04 0.2 0.07 0.03 0.12 0.11 0.18 0.03 0.17 0.15 0.07 0.07 0.01 0.06 0.04 0.08 0.09 0.1 0.06 0.2 0.13 0.19 0.12 0.1 0.03 0.12 0.07 0.15 0.14 0.09 0.16 0.04 0.15 0.1 0.1 0.33 0.25 0.24 0.1 0.31 0.05

8.226 9.216 9.497 7.966 9.968 9.448 12.45 9.069 11.99 11.92 13.69 9.656 9.153 10.6 9.527 9.446 10.43 9.378 10.28 8.956 10.93 9.774 9.741 10.02 10.29 10.39 9.079 10.52 9.287 8.761 10.23 8.363 8.437 9.528 9.362 8.237 7.452

7.77 8.521 8.635 9.13 8.559 8.641 8.551 8.272 8.679 8.585 8.592 8.358 8.676 8.603 8.609 8.73 8.35 8.587 8.636 8.753 8.74 8.713 7.078 8.518 8.501 8.71 8.522 8.657 8.463 8.556 8.459 8.386 8.521 8.67 8.54 8.711 9.509

0.08 0.1 0.09 0.2 0.09 0.14 0.17 0.1 0.15 0.12 0.14 0.1 0.08 0.1 0.09 0.08 0.1 0.1 0.12 0.1 0.11 0.09 0.1 0.11 0.19 0.15 0.15 0.14 0.11 0.15 0.13 0.44 0.41 0.19 0.13 0.32 0.36

Ti

F P 0.25 0 0.266 0.29 0 0 0.27 0 0 0.27 0 0 0.27 0.01 0

Co

Ni

Cu

Zn

Sum

79.32 ,86.67 87.88 88.3 88.33

!

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5

cpxl rim cpxl rim cpx1 near rim cpxl in cpxl in cpxl in cpxl in cpxl in, loZ area cpxl in, hiZ patch cpxl in, hiZ patch cpxl in, hiZ patch cpxl near core cpxl core cpxl core cpx1 core cpxl core cpxl core cpxl core cpxl near core cpxl in cpxl in cpxl in near hiZ cpxl in near hiZ cpxiin, hiZ patch cpxl in, hiZ patch cpxiin, hiZ patch cpxl in cpx1 in cpx1 in cpx1 in cpxl in cpxl in cpxl near rim cpxl near rim cpx1 rim cpxl in cpx1 near rim

0.76 0.37 0.36 0.09 0.33 0.38 0.24 0.48 0.31 0.31 0.2 0.39 0.31 0.38 0.31 0.35 0.38 0.38 0.4 0.31 0.24 0.38 0.41 0.37 0.42 0.29 0.47 0.25 0.47 0.47 0.34 0.58 0.64 0.32 0.4 0.43 0.26

0.03 0.02 0.04 0 0.02 0.04 0.05 0.02 0.07 0.07 0.08 0.04 0.01 0.04 0.01 0.01 0.03 0.03 0.03 0.02 0.03 0.04 0.03 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.08 0.12 0.06 0.03 0.06 0.05

9.38 9.782 9.787 10.63 9.429 9.701 8.277 10.9 8.617 8.489 7.745 9.488 10 9.088 10.07 9.856 9.055 9.702 9.226 9.933 9.261 9.721 7.893 9.257 9.231 9.197 9.834 9.293 9.619 10.01 9.148 10.25 10.09 9.811 9.776 10.21 9.287

1.911 0.851 0.831 0.183 0.903 0.788 0.625 0.883 0.854 0.934 0.721 0.834 0.83 0.897 0.968 0.983 0.997 0.911 0.943 0.808 0.713 0.859 1.727 0.995 1.11 0.684 0.845 0.502 1.014 0.858 0.917 1.631 1.693 0.946 0.841 1.137 0.622

25.5 24.9 25.1 25.8 24.7 25.1 24.9 27.7 24.6 24.4 24.4 25.2 25.5 24.9 25.1 24.9 24.6 25.4 24.9 25 25.1 25.2 25.2 25 24.8 25 25 25 25.2 25.2 24.7 24.5 24.2 24.9 25.2 24.7 24.9

0.13 0.16 0.13 0 0.16 0.13 0.13 0.09 0.14 0.14 0.13 0.12 0.08 0.13 0.11 0.14 0.13 0.13 0.14 0.15 0.06 0.14 0.08 0.16 0.13 0.1 0.19 0.06 0.12 0.15 0.12 0.19 0.24 0.12 0.14 0.14 0.15

0 0 0.01 0.01 0 0.01 0 0 0 0 0 0 0 0 0 0.01 0 0 0.01 0 0.01 0 0.01 0.01 0 0 0 0.01 0 0.01 0.01 0 0 0 0 0 0.01

0 0 0 0 0.447 0 0 0 0 0 0 0.256 0 0 0 0 0 0 0 0 0.318 0 0.255 0.064 0 0 0 0 0 0 0.064 0 0 0 0 0 0

96.77 95.97 96.93 96.61 96.37 96.68 97.02 103.4 96.92 96.19 96.86 96.34 97.38 96.65 97.31 96.92 95.74 97.45 96.73 96.24 97.39 97.4 93.84 96.77 96.72 96.53 96.43 96.15 96.78 96.58 95.85 97.21 96.6 97.03 96.8 96.43 93.81

Pyroxene, amphibole and biotite analyses

Amphibole analyses

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a

cpx1 nearest rim cpx1 nearest rim cpx-1 rim cpx-1 rim ac with ap near b act near biol act in contac chl hiZac in cont chl loZac in cont chl loZac rim loZac near rim loZac in hiZ rim of loZac hiZ rim of loZac hiZ rim-in, loZac loZ in loZac=1rim hiZ in of loZac hiZ in of loZac hiZ in of loZac hiZ in of loZac loZ patch inloZac loZ patch inloZac ac n rim to plag1 ac rim to plagi act1 rim acti in| act1 near core act1 core act1 near core acti in acti near rim acti rim acti rim

Na 0.43 0.58 0.48 0.56 0.33 0.24 0.32 0.3 0.18 0.62 0.57 0.62 0.19 0.15 0.21 0.46 0.08 0.13 0.14 0.15 0.18 0.16 0.17 0.17 0.31 0.29 0.29 0.25 0.33 0.32 0.31 0.31 0.4

CI 0.05 0.07 0.06 0.03 0.02 0.01 0 0.11 0.04 0.1 0.1 0.09 0.02 0.04 0.01 0.16 0.02 0.03 0.03 0.02 0 0 0.02 0.03 0.02 0.02 0.02 0,01 0.02 0.02 0.02 0.03 0.04

MR 10.91 10.72 7.868 9.362 10.67 10.14 7.052 8.92 11.25 10.92 10.92 10.91 8.742 4.545 9.922 11.57 13.65 13.73 13.52 13.45 12.07 12.08 12.03 12.51 9.991 10.07 10.35 10.72 10.27 10.46 10,91 6.5 9.351

1.048 1.139 1.244 1.252 0.957 1.187 0.809 1.412 0.329 1.414 1.348 1.36 1.205 0.719 0.474 1.196 0.167 0.245 0.311 0.334 0.396 0.354 0.422 0.264 0.903 0.862 0.639 0.608 0.938 1.054 0.916 0.484 2.031

Si 25.2 24.8 23.9 24.9 25 25 24.1 24.1 25.9 24.8 24.9 25 24.8 34.7 25.1 25.1 26 26 25.8 25.9 25.9 26.1 27.4 26.4 24.3 24.7 25 25.6 25 24.6 25.2 21.6 24

0.11 0.12 0.17 0.16 0.12 0.08 0.14 0.24 0.07 0.22 0.25 0.2 0.1 0.09 0.04 0.17 0.01 0.01 0.01 0.01 0.04 0.06 0.05 0.03 0.11 0.1 0.11 0.1 0.1 0.1 0.09 0.11 0.14

Ti 0.14 0.11 0.15 0.14 0.32 0.08 0.04 0.23 0.01 0.08 0.14 0.12 0.09 0.08 0.03 0.17 0.05 0.05 0.05 0.12 0.06 0.1 0.04 0.08 0,25 0.11 0.13 0.08 0.2 0.06 0.04 0.02 0.05

Fe 7.152 1 7.837 12.16 9.556 7.813 8.364 14.57 10.24 6.817 7.841 7.519 7.525 10.51 4.98 11.19 6.124 12.12 11.57 10.84 11.38 5.528 5.81 4.727 10.74 7.777 7.93 7.979 7.648 7.958 8.104 7.132 10.63 10.34

Ca 8.808 8.347 8.273^ 8.565 9.033 8.987 8.406 8.786 8.689 7.736 7.859 7.802 8.94 4.923 6.605 8.299 0.705 0.609 1.509 1.453 8.751 8.294 8.851 4.164 8.888 9.006 8.927 9.011 8.974 9.095 9.118 6.801 8.95

0.24 0.43 0.16 0.11 0.05 0.15 0.24 0.11 0.27 0.4 0.43 0.42 0.27 0.07 0.58 0.3 1.11 1.08 1.17 1.1 0.09 0.24 0.13 0.57 0.1 0.08 0.06 0.11 0.08 0.07 0.06 0.1 0.12

P 0.02 0.01 0.01 0.01 0 0 0 0.01 0 0 0.01 0.01 0 0.01 0.01 0 0 0 0 0.02 0.01 0 0.02 0 0 0 0.01 0 0 0.01 0 0 0.02

0 0 0.624 0 0 0 0.37 0 0 0 0 0 0.257 0 0 0 0.06 0 0.243 0.061 0 0 0 0 0.225 0.15 0.199 0.192 0.208 0.124 0.134 0.016 0.17

Sum 96.89 96.47 95.42 96.87 96.97 96.57 96.56 95.92 96.4 96.49 96.58 96.64 96.97 97.1 95.85 96.36 96.74 96.23 96.3 96.96 96.1 96.39 98.32 98.4 93.89 94.88 95.53 97.07 96.14 96.05 96.49 81.85 97.63

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

cpx2,c core cpx2, l( loZ rim cpx2, l( loZ in cpxl, l( loZ rim?act? cpx1, l(|loZ in?act? cpx1, l( loZ in?act? cpx1, l< loZin?act? cpx1, l( loZin?act? bio2 velvery loZ ptch

0.87 0.25 0.25 0.65 0.46 0.62 0.46 0.45 0.2

0.19 0.06 0.08 0.09 0.08 0.08 0.06 0.37 0.05

9.1 11.54 11.66 7.962 11.02 10.63 10.99 10.96 11.66

2.376 0.524 0.407 2.109 1.257 1.721 1.127 1.184 0.575

23.2 25.9 26.2 25.2 25.1 24.4 25.2 25.2 26

0.24 0.13 0.08 0.13 0.19 0.26 0.16 0.2 0.19

0.51 0.13 0.08 0.1 0.27 0.41 0.26 0.2 0.21

8.411 5.962 5.834 9.272 6.811 7.658 6.754 7.01 5.889

9.924 8.429 8.437 7.778 8.577 8.315 8.715 8.431 8.273

0.3 0.56 0.61 0.48 0.47 0.44 0.54 0.5 0.59

0.02 0.02 0 0 0 0 0.01 0 0.01

0 0 0 0 0 0 0 0 0

96.89 96.57 96.79 95.75 96.99 97.03 97.17 97.18 96.74

Sample #

Mineral

Comments

Al

K

Mn

F

Co

Ni

Cu

Zn

Pyroxene, amphibole and biotite analyses

Amphibole analyses Sample # SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Mineral

cpx?1 rim cpx? out bio4 rim cpx?2 near rim cpx?2 in cpx?2 in cpx?2 core also cpx?2 rim to bio5

0.77 0.13 0.29 0.05 0.62 0.07 0.59 0.09 0.83 0.15 0.33 0.06 0.63 0.1

10.371 11.33 11.08| 11.21 10.3 11.59 10.6

1.823 1.269 1.33 1.259 1.898 0.73 1.49

23^ 25.1 24.4 24.6 23.4 25 23.6

K 0.3 0.57 0.28 0.27 0.35 0.13 0.3

Ti Fe 1.66 8.125 0.32 r 6.269 0.31 6.832 0.31 6.87 0.22 8.028 0.21 6.149 0.35 7.175

7.907 8.261 8.459 8.279 7.918 8.468 8.423

P F Co 0.63 0 0.607' 0.38 0.01 ^.654 0.54 0 0.435 0.56 0 0.724 0.57 0 0.435 0.49 0 0.629 0.62 0 0.615

SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a

rim to plagi act nr to plagi act act1 loerZ patch hierZ patch acti acti rim to ksp near rim acti acti in loZ in hiZ acti in hiZ acti hiZ area ncor acti act rim to plag act nrim to plag act in act in act in act in act in, loZ schirn act in, hiZ schirn act rim ditf grain act in, diff grain act in, diff grain act cor diff grain act cor diff grain act in, diff grain act in, diff grain act rim diff grain act out zoned plag act rim2zoned plag cpx?1 rim cpx?1 near rim cpx?1 in cpx?1 loZ in cpx?1 rni2mt inci

0.22 0.23 0.45 0.12 0.29 0.12 0.29 0.14 0.16 0.1 0.23 0.25 0.27 0.41 0.17 0.14 0.08 0.11 0.32 0.15 0.16 0.09 0.21 0.19 0.12 0.18 0.41 0.4 0.36 0.32 0.36 0.36 0.16

0.03 0.08 0.08 0.02 0.03 0.1 0.13 0.03 0 0.01 0.33 0.05 0.05 0.07 0.08 0.04 0.05 0.03 0.01 0.01 0.01 0 0.02 0.03 0.05 0.14 0.2 0.22 0.22 0.26 0.11 0.21

8.229 1.899 7.7 1.634 9.256 2.127 6.893 1.114 9.16 1.657 9.525 0.542 9.622 1.527 7.056 1.314 8.784 4.029 7.376 3.143 9.504 1.202 8.909 1.543 8.78 1.447 9.008 1.809 8.992 1.049 7.683 0.73 10.22 0.438 7.749 0.668 10.64 M.4'0^ 11.37 0.648 11.12 0.767 12.13 0.353 11.08 0.942 9.872 1.116 11.59 0,457 11.38 0.794 10.09 1.606 10.22 1.394 10.44 1.284 10.49 1.164 9.902 1.071 10.22 1.586 9.375 0.57

24.2 23.8 23.7 24 24.5 25.4 24.5 24.1 21.4 21.9 25 24.3 24.4 24.3 24.9 24.4 25.7 24.7 25.2 25.8 25.6 26.2 25.6 24.9 26 25.5 24.6 24.7 24.4 24.6 24.4 23.6 23.6

0.07 0.06 0.11 0.06 0.15 0.04 0.13 0.08 0.07 0.06 0.07 0.09 0.07 0.07 0.07 0.06 0.03 0.06 0.17 0.04 0.04 0.03 0.04 0.08 0.03 0.07 0.21 0.18 0.13 0.13 0.11 0.15 0.09

0.08 0.06 0.38 0.02 0.33 0.08 0.31 0.03 0.03 0.05 0.13 0.22 0.12 0.17 0.14 0.04 0.1 0.07 0.23 0.06 0.06 0.06 0.08 0.1 0.04 0.11 0.27 0.31 0.13 0.19 0.13 0.26 0.1

8.675 8.571 8.438 8.698 8.487 8.79 9.058 8.536 6.205 7.347 7.409 8.53 8.511 8.465 8.839 8.441 9.078 8.59 8.36 8.566 8.648 8.899 8.818 7.69 8.573 8.58 8.209 8.374 8.256 8.151 8.016 8.657 7.143

0.51 0.6 0.4 0.86 0.48 0.67 0.56 0.79 0.51 0.7 1.11 0.54 0.58 0.43 0.58 0.85 0.71 0.81 0.42 0.39 0.4 0.4 0.47 0.62 0.55 0.66 0.53 0.41 0.57 0.6 0.63 0.44 0.75

0 0.01 0 0 0.01 0 0.04 0 0 0.01 0.02 0.01 0.01 0 0.01 0 0 0 0.01 0 0.01 0 0.01 0 0.01 0 0.02 0.01 0 0.02 0 0 0.01

0.13 0 0 0 0 0 0 0.192 0 0.063 0.065 0.066 0.52 0 0.328 0.065 0 0 0 0.673 0 0 0 0.525 0 0 0 0 0.389 0.198 0.238 0.334 0.135

96.16 95.04 96.19 96.1 95.78 96.31 96.8 96.1 93.97 93.68 97.34 95.89 96.59 96.11 96.64 95.54 96.94 96.45 97.07 96.29 96.21 96.61 96.67 95.19 96.58 96.95 97.27 97.27 95.72 96.45 95.28 94.05 94.92

SMCM-7a

cpx?1 rim

0.24

0.16

9.709 1.372

25 0.13 0.18 6.423 12.086 0.73

0

0

99.2

Comments

Na

CI

o.i7

Mg

A1

Si

10.61 11.66 9.524 13.77 8.893 9.011 8.462 13.1 12.62 13.24 10.24 9.894 10.43 9.674 9.828 12.34 8.012 12.41 7.314 5.989 6.646 5.018 6.436 8.625 6.058 6.64 8.841 8.606 7.955 8.371 8.971 7.451 12.45

Ca

Mn

Ni

Cu

Zn

Sum

96.97 97.11 96.41 96.87 95.08 95.85 95.02

1

Pyroxene, amphibole and biotite analyses

Amphibole analyses

SMCM-7a S'MCM-7a SMCM-7a' SMCM-7a SMCM-7a SMCM-7a SMCM-7a SIVICM-7a SMCM-7a SMCM-7a

cpx?1 in cpx?1 near rim cpx?1 in cpx?1 in cpx?1 in cpx?1 away cpx?1in cpx? in cpx? near rim cpx? rim

Na 0.2 0.14 0.26 0.13 0.08 0.19 0.23 0.3 0.22 0.19

SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a

hbll hbll hbll hbll hbll hbll hbll hbll hbll hbll hbl2 hbl2 hbl2 hbl2 hbl2 hbl2 hbl2 hbl2 hbl2 hbl2

0.52 0.48 0.67 0.5 0.54 0.64 0.55 0.72 0.57 0.58 0.75 0.77 0.89 0.46 0.52 0.45 0.51 0.31 0.49 0.43

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

hbl1 hbll hbl1 hbl1 hbl1 hbl1 rim hbl1 hbl1 rim hbll rim hbll rim small hbl1

Sample #

Mineral

Comments

rim rim in rim near rim in core? in in rim rim to plag near rim to plag in in in core? core? in in in

CI

Mg

AI

or2i 0.01 0 0.01 0.01 0.1 0.05 0.24 0.05 2.09

8.981 9.784 9.095 9.025 8.688 9.22 9.317 10.46 10.66 7.039

0.741 0.575 1.236 0.683 0.379 0.843 1.461 1.883 1.547 0.783

Si 25.2 26;4 25 25.7 25,7 25.6 25.1 25.3 25.4 23.7

0.05 0.04 0.05 0.02 0.03 0.06 0.09 0.26 0.06 0.04

Ti 0.1 0.06 0.13 0.07 0.05 0.1 0.23 0.12 0.13 0.13

Fe Ca 9.145 9.935 8.446 8^974 9.499 8.741 9.676 8.948 9.394 8.94 9.369 8,88 8.867 8.746 7.792 8.973 6.336 9.094 5.539 11.777

0.85 0 0.2 o' 0,93 0 0,81 0 0 1,25 0.01 0.725 1.69 0 0 0.88 0.02 0 0,82 0 0.133 0.66 0 0 0.63 0 0.068 0.67 0 0

0.07 0.08 0.1 0.09 0.09 0.13 0.11 0.14 0.09 0.09 0.11 0.1 0.14 0.06 0.07 0.08 0.09 0.07 0.11 0.07

11.46 11.43 11.28 11.22 11.31 11.39 11.19 11.16 11.36 11.46 10.76 11.08 10.62 11.5 11.69 11.67 11.68 11.93 11.3 11.67

1.096 1.097 1.602 1.237 1.265 1.476 1.196 1.569 1.322 1.29 1.792 1.687 2.174 0.861 0.978 0.918 0.91 0.384 0.94 0.905

25.8 25.7 24.9 25.2 25.2 25 25.3 24.8 25.3 25.3 24.9 25 24.3 28.2 25.7 25.8 25.8 26.4 25.9 25,9

0.18 0.17 0.18 0.16 0.18 0.2 0.22 0.25 0.19 0.18 0.2 0.18 0.32 0.17 0.13 0.14 0.16 0.08 0.14 0.13

0.21 0.18 0.26 0.31 0.41 0.42 0.3 0.41 0.43 0.35 0.37 0.26 0.4 0.31 0.22 0.27 0.21 0.15 0.26 0.25

6.19 6.004 6.206 6.028 6.073 5.927 6.3 6.577 5.868 5.758 7.094 6.971 7.373 5.872 5.761 5.852 5.969 5.614 6.385 5.896

8.343 8.345 8.34 8.646 8.718 8.582 8.478 8.327 8.545 8.591 8.345 8.256 8.22 8.479 8.36 8.486 8.462 8.338 8.383 8.517

0.27 0.32 0.31 0.29 0.26 0.22 0.3 0.29 0.27 0.3 0.31 0.33 0.34 0.28 0.27 0.27 0.22 0.41 0.39 0.3

1.17 0,14 1.02 0.36 1.2 0.15 1.22 0.16 1.09 0.12 1.07 0.11 1.23 0.17 1.06 0.13 1.12 0.15 1.14 0 1.02 0.06

8.367 7.748 6.759 7.05 8.187 8.031 8.616 7.867 8.459 8.566 9.065

4.038 4.403 5.311 5.191 4.002 4.163 4.119 4.097 3.861 4.004 2.97

21.4 20.9 19.7 19.9 21.5 21.3 21.5 21.2 21.8 21.6 23.1

0.7 0.78 1.06 1.07 0,65 0.72 0.69 0.71 0.67 0.65 0.37

0.94 0.94 1.16 1.11 0.85 0.83 0.94 0.89 0.81 0.83 0.69

10.97 12.21 13.22 12.74 11.2 11.29 10.27 11.71 10.91 10.28 9.357

8.16 8.224 8.076 8.208 8.174 8.237 8.247 8.181 8.264 8.198 8.088

0.47 0.01 0.553 0.43 0 0.354 0.42 0.01 0.366 0.44 0.02 0.443 0.45 0 0.552 0.47 0 0.407 0.44 0 0.628 0.45 0 0.405 0.44 0 0.52 0.48 0 0.529 0.59 0 0.296

K

Mn

P

0 0 0 0.03 0.01 0.01 0 0.01 0 0 0 0.01 0.02 0.01 0 0 0 0.01 0 0.01

F

0.411 0.387 0.386 0.397 0.371 0.514 0.395 0.427 0.515 0.532 0.442 0.705 0.407 0.507 0.237 0.481 0.253 0.406 0.496 0.422

Co

Ni

Cu

Zn

Sum 97.78 98.72 97.08 98.52 97.13 97.85 97.44 99.62 97.38 90,4

0.052 0 0 0.018 0.036 0 0.005 0 0 0 0 0.027 0 0 0 0.007 0.056 0 0.02 0

97.79 97.34 96.95 96.83 97.47 97.32 97.1 97.44 97.42 97.38 97.92 98.23 97.86 98.17 97.2 97.71 97.55 97.57 98.11 97.82 98.15 98.31 97.71 98.03 97.89 97.64 98.31 97.63 98.44 97.57 97.5

Pyroxene, amphibole and biotite analyses

Amphibole analyses Al 5.152 5.066 4.631 2.675 2.874 4.197 4.315 4.705 3.692 2.169

Si 20.1 19.8 20.5 22.9 22.6 21.2 21 20.5 22.2 24

K 1.08 1.01 0.92 0.44 0.53 0.8 0.78 0.95 0.54 0.4

CI

Mg

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

small 1" rim small hbl2 small hbl2 small h rim small !• rim small h center small (• center small h center small h center act?

1.31 1.26, 1.18 0.88 0.83 1.2 1.19 1.22 1.05 0.75

0.52 0.11 0.27 0.34 0.19 0.21 0.13 0.11 0

7.527 6.669 7.043 9.392 9.131 8.301 7.772 7.304 8.698 10.85

SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-1a SMPW-1a SMPW la SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-1a SMPW-la

plag? difficult shot hbl less high z mat less high z mat hbl hbl less high z mat less high z mat hbl plag? strange rim on act's act's act's act's act's rim act slightly lower z act slightly lower z act adjacent highei act rim to core to c tit? act-hbl higher z contac act-hbl higher z contac plag? higher z contac unknov higher z contac act-hbl even less high Kspar? even less high qtz? even less high epi? cz even less high assoc. with cm. assoc. with sm act clay? assoc. with sm plag? surrounding 20 outer zone act act outer zone outer zone act inner zone rim act

8.21 1.25 1 1.28 1.31 0.18 1.35 1.43 1.45 1.61 0.85 1.35 1.44 0.34 0.19 0.02 1.28 1.41 6.07 1.1 1.4 0.41 0.07 0.64 0^ 1.3 0.69 0.63 1.12 1.13 1.33 0.59

0.01 0.012 11.26 35 0.74 0.03 0.369 0.416 0.02 0.04 10.39 1.511 24.9 0.37 0.31 9.24 8.004 0.51 0.02 10.19 1.023 25.8 0.33 0.17 9.243 7.58 0.52 0.02 10.77 1.002 25.6 0.39 0.38 8.445 7.395 0.55 0.02 10.38 1.462 25 0.36 0.3 8.775 7.799 0.44 0.01 2.803 0.34 36.5 0.04 0.04 2.874 6.377 0.36 0.03 10.01 1.939 24.5 0.41 0.51 9.652 7.908 0.47 0.03 10.18 1.797 24.6 0.44 0.47 8.969 7.768 0.43 0.02 10.37 1.66 24.6 0.41 0.49 8.843 7.696 0.45 0.01 10.82 1.148 25.5 0.4 0.39 8.663 7.308 0.4 0.01 10.68 0.925 25.7 0.23 0.17 8.809 8.144 0.5 0.02 10.93 0.895 25.7 0.41 0.36 8.326 7.427 0.43 0.01 10.11 1.713 24.7 0.42 0.53 9.182 7.658 0.44 0 8.815 0.777 25.6 0.19 0.06 11.61 8.71 1 0.01 8.164 0.512 25.7 0.17 0.02 12.79 8,821 1.24 0.01 0.077 0.259 34.4 0.02 14.2 1.027 6,706 0.03 0.02 10.78 1.16 25.4 0.36 0.28 8.551 7,789 0.46 0.02 10.48 1.062 25.4 0.38 0.29 9.277 7.196 0.62 0.01 1.955 12.28 30.3 0.62 0.09 1.782 1.535 0.09 0.01 1.895 12.19 30.8 0.59 0.07 1.928 1.492 0.08 0.02 10.75 0.91 25.5 0.47 0.22 8.346 7.42 0.44 0.15 0,004 10.38 33 7.81 0.02 0.24 0.105 0.01 0 0.889 0.401 45.3 0.05 0 1.174 0.854 0.04 0 6.387 2.209 25.8 1.83 0.03 6.611 12.721 0.6 Q Q7 Q 0QQ 2 868 45^ g 02 (Wl- 4.S64 2 63^ 0 Q5 0.02 10.24 1.6 24.8 0.37 0.34 9.487 7.837 0.48 0.04 1.132 39.2 7.22 0.25 0.02 1.974 1.623 0.11 0 7.169 2.609 26.1 1.82 0.09 11.98 7.258 0.48 0.01 10.52 0.889 25.7 0.33 0.08 9.03 8.075 0.31 0.01 10.33 0.898 25.7 0.37 0.1 9.105 7.902 0.32 0.01 10.75 0.814 25.9 0.41 0.11 8.728 7.855 0.25 0.02 9.518 0.858 25.6 0.23 0.02 10.6 8.706 0.49

Sample # SMI^-5

Mineral

Comments

Na

Ti 0.94 0.94 0.98 0.8 0.78 0.93 0.96 1.02 0.69 0.4

Fe 11.67 13.45 13.191^ 9.522 9.426 11.05 11.8 12.77 10.26 7.488

Ca

8.19 8,282 8,082 8.233 8.643 8.233 8.153 8.028 8.134 8.89

P 0.51 0 0.51 0.08 O.4T " 0.01 0.54 0 0.44 0.01 0.48 0 0.5 0 0.44 0.01 0.45 0.01 0.14 0

Mn

0 0 0 0 0.19 0.01 0 0 0 0 0 0.01 0 0 0 0 0 0 0.01 0.01 4.04 0 0 0 Q Q2 0.01 0.28 0.01 0 0 0.01 0.01

F 0.527 0.452 O.445I

0.64 0.59 0.701 0.588 0.496 0.617 0.81 0 0.817 0.657 0.8 0.753 0.018 0.805 0.787 0.704 1.03 0,731 0.838 0.858 0.441 0.41 0,007 0,994 0,935 0.673 0.64 1.34 0.016 0,163 0,033 6,042 0.847 0.055 0.595 1.086 1.075 1.044 0.822

Co

Ni

Cu

Zn

Sum 97.57 98.14 ,98,04 98.12 97.72 98.42 98.05 98.18 97.99 98.58 109.3 100.6 99.94 100.2 100.2 96.81 100.6 99.86 99.6 100.8 100.1 100.3 100.2 100.5 100.8 108.7 100.5 100.4 105.6 99.66 109.2 101.4 102.3 100.1

48t?8 100.6 98.4 102.7 100.5 100.1 100.8 100.6

Pyroxene, amphibole and biotite analyses

Amphibole analyses Sample #

Mineral

Comments

SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-1a SMPW-1a SMPW-la SMPW-1 SMPW-1 SMPW-1 SMPW-1

act inner zone rim act inner zone act inner zone act outer zone act outer zone act outer zone act outer zone rim act outermost act act outermost act act fine needles act fine needles fine needles act act fine needles act lower z cores lower z cores act lower z cores act acti ? rim to plag acti ? core acti ? hierZ splin acti ? hierZ splin

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

cpxl, rim cpxl, in cpxl, in cpx1, in cpx1, core cpx1, in cpx1, in cpx2, rim cpx2,in cpx2,in cpx2,core cpx2,in cpx2,in cpx2,rim bid ,cc Bio? titi mt1 unkn loZ in mtl hbl?1 rim hbl?1 rim hbl?1 in hbl?1 In

Na

CI

Mg

K

Ti

0.67 0.72 0.71 0.74 0.64 0.71 0.94 0.88 1.01 0.19 0.35 0.21 0.21 0.7 1.34 0.51 1.08 1.14 0.07 0.32

0.01 0.01 0.02 0 0.01 0.02 0 0 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.01 0.03 0.02 0.01 0.01

9.194 10.33 8.572 10.58 10.25 9.94 10.59 10.5 9.489 6.958 7.057 7.369 7.888 9.996 11.17 6.267 10.34 10.19 5.263 6.825

1.02 25.4 0.741 "26.1 1.575 24.7 0.874 26 0.963 25.6 0.898 25.8 0.919 25.7 0.744 26 1.964 24.8 1.481 24.4 1.435 24.3 0.87 24.9 1.472 24.7 0.984 25.4 1.473 25.7 0.831 15.9 1.282 25 1.466 25 0.39 24.9 0.859 24.8

0.27 0.16 0.39 0.3 0.2 0.3 0.29 0.26 0.32 0.1 0.2 0.09 0.11 0.25 0.35 0.28 0.27 0.28 0.05 0.13

0.07 0.07 0.05 0.04 0.12 0.15 0.06 0.1 0.09 0.02 0.07 0.09 0.06 0.03 0.34 0.06 0.27 0.28 0.01 0.05

2.17 2.08 1.2 0.74 0.4 0.53 1.38 0.5 0.48 0.51 0.49 O.TT^ 0.66 0.9 1.38 0.95 2.99 2.92 0.88 0.93 0.9 0.81

0.02 0 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.03 0.01 0.01 0.01 0.02 0.01 0.02 0.01

3.43 3.701 4.526 4.596 4.923 4.547 3.387 4.528 4.259 4.14 4.137 3.968 3.864 3.836 2.749 1,192 0.612 0.189 2.52 2.393 2.647 2.978

11.21 10.58 10.56 12.9 11.85 13 13.37 14.38 13.3 12.41 12.19 12.12 11.14 10.49 13.08 16.04 12.36 13.24 17.69 17.37 16.61 17.15

1.15 1.07 0.74 0.56 0.28 0.3 1.01 0.49 0.61 1.51 2.63 2.72 3.91 4.18 5.13 1.52 2.51 1.92 1.14 1.18 1.19 1.01

0.04 0.06 0.09 0.08 0.11 0.08 0.07 1.32 1.34 1.37 1.33 1.51 0.97 0.8 0.97 6.03 2.8 3.75 0.28 0.24 0.4 0.36

A1

Si

Fc 11.07 97363

Ca

Mn

P

8.8811 9.172 9.78 8.734 9.075 9.171 14.99 14.91 14.44 13.48 10.05 8.777 8.964 8.251 8.362 16.25 14.29

8.575 8.425 8.399 8.5 8.739 8.57 8.423 8.358 7.67 8.287 8.46 7.884 8.084 8.521 7,853 10.987 7,905 7,96 8.529 8.394

0,49 0,44 0.58 0.42 0.45 0.6 0.32 0.38 0.32 0.78 0.66 1.33 0.59 0.66 0.44 0.44 0.46 0.51 1,25 0,68

0.01 0 0.01 0,01 0,02 0.01 0.01 0.01 0.04 0 0.01 0 0 0 0 0.01 0.01 0.01 0 0.01

F 0.745 0.806 0.535 0.838 0.702 0.602 1.158 0.864 0.565 0.159 0.147 0.146 0.172 0.545 0.919 1,289 0.979 0.878 0.222 0.297

3.351 3.572 4.259 4.29 4.69 4.329 3.219 4.216 4.098 4.363 4.911 4.964 4.882 4.824 4.004 5.322 19.31 18.46 18.59 19.04 18.78 15.87

8.131 8.36 10,024 10,198 11,184 10,198 7,503 11,224 10,562 9,65 8.301 7.152 6.227 5.823 3.127 8.74 2.219 2.91 4.749 4,704 5,281 5,984

0,41 0,36 0,51 0,46 0.52 0.4 0.44 0.53 0.45 0.45 0.42 0.38 0.31 0.33 0.22 0.15 0,03 0.03 0.21 0.2 0.27 0.21

0.01 0.02 0 0.01 0 0.01 0.01 0,01 0 0 0,02 0.01 0.01 0.01 0.02 0.36 0.03 0.02 0.02 0.03 0.04 0.05

0.06 0.043 0 0.094 0.026 0 0 0 0 0.061 0.12 0.043 0.119 0.254 0.084 0.169 0.131 0 0.022 0.1 0.115 0,104

12.0f

Co

Ni

Cu

Zn

Sum

100,4 100,9 100,1 100.9 100,3 101 100,7 100,9 98,03 98,98 99,36 99.2 98.85 100.3 102.8 75.98 98.12 98.5 97.46 97.94

1

24.6 24.7 23 20.4 20.1 20.3 22.2 18.3 19.1 19.5 19.8 19.6 21.1 21.5 21.4 15.6 16.9 15.7 13.4 13.4 13.9 14.2

100.2 100 99.4 97.89 96.94 97.02 96.9 99.09 97.29 96.5 96.92 95.15 95.23 94.62 94.55 99.06 100.4 99.27 100.2 100 100.8 99.91

Pyroxene, amphibole and biotite analyses

Amphibole analyses Sample # SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Mineral Comments hbl?1 in hbl?1 in hbl?1 core hbl?1 core libl?1 core tibl?1 core hbl?1 core hbl?1 core hbl?1 in hbl?1 in hbl?1 in hbl?1 in hbl?1 in hbl?1 in hbl?1 rim hbl?1 rim mtl 1 amph-rim to hbl2 hbl2 rim hbl2 in hbl2 in hbl2 in hbl2 core hbl2 core hbl2 core hbl2 in hbl2 in hbl2 in hbl2 rim hbl2 rim bio in biohbl in hbl in biohbl in hbl in biohbl in hbl in biohbl in hbl in biohbl in rim in biohbl in hin, biohbl big hin, biohbl big hin, biohbl big hin, biohbl big hin, biohbl big hZin, biohbl big hcor, biohbl big

Na 0.77 ^ 0.8 0.79 0.47 0.69 0.53 0.69 0.54 0.63 0.71 0.96 1.17 1.47 1.55 1.72 2.1 1.11 1.61 0.97 0.52 0.41 0.36 0.43 0.58 0.89 1.07 1.53 1.91 2.13 2.35 1 0.21 0.94 1.49 1,85 I" 2.7"^ 0.6 0.28 0.92 1.11 0.98 1.32 1.17

CI 0.03 0.02 0.01 0.02 0.01 0 0.01 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.03 0.01 0.01 0.02 0.01 0.02 0 0.01 0.03 0.03 0.02 0.03 0.03 0.01 0.02 0.03 0.02 0.02

Mg 3.171 3.533 3.987 4.356 4.39 4.279 4.182 4.023 4.145 3.777 3.445 3.062 2.857 2.651 2.378 2.211 2.012 1.461 2.143 2.454 2.739 3.006 3.553 3.569 3.797 3.628 3.544 3.268 2.968 2.931 2.941 3.607 3.128 2.63 2.4 1.838 7.869 8.998 7.572 7.609 7.951 7.409 8.029

Al

Si

16.92 16.32 16.04 16.09^ 15.87 15.72 15.69 15.87 13.63 13.09 12.83 12.63 11.82 13.26 13.31 12.48 13.58 10.41 9.13 9.273 8.537 9.077 10.2 10.89 8.878 8.775 8.951 8.989 9.602 9.614 10.6 6.091 8.972 11.15 11.25 13.78 7.236 6.926 4.53 4.811 4.768 5.485 5.794

14.4 15.5 18.1 17.5 17.6 17.9 18.7 18.5 20.1 20.3 21.3 22 21.8 22.8 23.2 25 20.9 27.8 28.3 27.3 26.4 25.4 22.2 21.2 22 23.3 25 26.1 26.1 26 18.4 13.7 18.7 21 22.2 23.3 19.5 17.9 20.8 21.2 22.1 21.4 21.3

K 0.7 0.79 0.86 0.5 0.11 0,29 0.14 0,19 0,59 0,84 1.15 1.44 1.68 1.95 2.13 2.41 3.35 1.2 1.27 1.32 1.21 1.03 0.81 1.04 1.78 2.13 2.5 2.81 3.05 3.05 3.3 1.8 2.75 2.99 3.32 2.77 2.57 2.68 0.7 1.08 1.25 1,39 1.12

Ti

0.55 0.11 0.08 0.09 0.04 0.04 0.05 0.1 0.12 0.08 0.01 0.03 0.02 0.07 0.07 0.03 0.16 0.03 0.01 0.04 0.05 0.01 0.04 0.01 0.06 0.03 0.01 0 0.05 0.04 1.28 0.77 0.95 0.52 0.43 0.28 0.54 0.71 0.41 0.43 0.44 0.51 0.59

Fe Mn P F Ca 13.68 6.952 0.3 0.13 0.107 10.62 7.621 0.31 0.24 0.039 4.002 9.215 0.41 0.19 0.009 4.442 10,092 0.37 0.2 0.085 4.385 10,236 0.41 0.24 0.161 4.254 10.113 0.43 0.19 0.102 4.195 9.863 0.41 0.22 0.017 4.032 9.624 0.39 0.21 0.043 4.656 9.803 0.38 0.33 0.077 5.047 9.547 0.37 0.34 0.009 4.605 8,979 0.36 0.51 0 4.349 8,463 0.28 0.72 0 3.973 9.03 0.27 1.33 0.129 3.848 7,121 0.25 0.46 0.213 3.911 6.445 0.22 0.22 0.025 3.523 5.4 0.19 0.07 0 9.9 4.371 0.18 0.01 0.048 7.226 3.327 0.17 0.01 0 6.772 4.72 0.18 0.01 0 6.973 5.215 0.24 0.02 0.091 7.888 5.869 0.31 0 0 7.836 6.379 0.28 0 0.074 9.984 7.252 0.31 0 0.024 10.65 7.271 0.36 0.02 0 12.11 7.565 0.3 0 0 9.312 7.646 0.39 0.02 0.025 5.522 7.745 0.33 0 0.144 3.269 7.545 0.35 0.01 0.026 2.904 6.965 0.37 0.01 0 2.965 6.856 0.3 0 0.009 7.41 6.468 0.26 0.02 0.091 23.33 6.774 0.32 0.04 0.07 11.75 6.152 0.3 0.02 0.158 6.051 5.556 0.24 0 0.108 5.511 5.053 0.26 0.05 0.042 2.413 4.599 0.2 0.02 0 10.66 2.456 0.37 0 0.237 11.94 2.602 0.47 0.02 0.646 9.146 7.082 0 0.01 0.39 8.692 6.483 0.4 0.02 0.512 8.492 6.882 0.37 0.01 0.459 8.029 6.562 0.3 0.01 0.427 8.398 7.106 0.33 0 0.483

Co

Ni

Cu

Zn

Sum

98.89 97.44 96.78 97.28 97.28 96.8 97.93 97.15 98.45 97.69 98.31 98.91 99.07 99.26 98.69 99.04 98.71 99.36 99.79 99.09 98 97.63 97.61 98.18 100.1 99.72 99.82 99.45 99.58 99.31 90.7 90.65 92.48 92.85 94.6 96.31 91.02 91.13 90.31 91.79 94.34 92.9 95.31

Pyroxene, amphibole and biotite analyses

Amphibole analyses

—-

Sample It mpw-3 ~SMPW-3" SMPW-3~" SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Mineral Comments hcor, biohbl big hcor, b ohbl big hcor, b ohbl big hcor, biohbl big hin, biohbl big hin, biohbl big cpxl rim ovrgrth cpxl rim ovrgrth cpxl rim ovrgrth

Na

CI

1.21 1.22 1.3 1.24 0.87 0.75 0.49 0.52 0.35

o.oV

SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b

cpx? lower 2 area wl cpx2 next to cpxl cpx! (u act? after cpx? act2?t possibly the twact2?|- possibly the tw( act2?t possibly the tw^ act2?t possibly the tw( act2?t possibly the tw< act2?t possibly the tw act2? \ possibly the tw< act2?t possibly the twi act2?|- possibly the twi hbl? islands of highc act or 1 not bio as susp act or \ not bio as susp act or 1 not bio as susp act or \ not bio as susp act or \ lower z area wi 42-hbl' Cpx? rather ths 43-hbr Cpx? rather th£ 44-hbl' Cpx? rather th£ 83-hbl' Cpx? rather the 88-act' Cpx? rather the 89-act' Cpx? rather the 90-act' Cpx? rather tha 118-bid not bio! chl? 119-bic not bio! chl?

SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4

act? act? act? act? act?

0.02 0.03 0.04 0 0.01 0.01

Mg 8.075 7.735 7.821 7.744 7.987 8.156 6.557 6.691 6.425

A! 5.939 5.925 6.247 5.339 5.779 5.589 1.492 4.716 0.384

21.5 20.7 20.4 20 18.8 18.4 27.5 22.7 24

K 1.11 0.95 1.05 1.22 2.65 2.9 0.1 0.21 0.13

Ti 0.63 0.57 0.69 0.61 1.24 1.25 0.07 0.02 0.02

Fe Ca 8.369 7.251 8.25 7.206 8.48 7.109 8.594 " 6.778 9.145 4.911 9.867 4.894 6.364 11.387 10.56 9.44 15.07 8.117

0.57 0.43 0.64 0.44 0.24 0.22 0.28 0.24 0.15 0.28 0.5 0.44 0.61 0.44 0.26 0.17 0.34 0.2 0.62 0.54 0.62 0.53 0.52 0.57 0.19 0.6 0.04

0,08 0.02 0.29 0.02 0.08 0.11 0.18 0.12 0.1 0.38 0.04 0.06 0.15 0.25 0.14 0.06 0.14 0.04 0.04 0.05 0.03 0 0 0 0.03 0.04 0

10.22 10.08 9.388 10.92 11.09 11.52 11.71 11.86 11.89 11.58 10.96 10.62 9.901 9.475 10.16 10.46 9.915 11.65 9.821 9.616 9.387 9.66 9.486 9.559 9.672 9.655 10.12

1.921 0.584 2.721 0.807 0.857 0.785 0.979 0.716 0.43 0.852 0.969 0.821 2.318 1.996 1.294 0.76 1.704 0.84 0.707 0.717 0.846 0.732 0.671 0.707 0.718 0.84 7.354

24.7 25.7 23.9 25.9 26 26.1 26.1 26.4 26.5 26.3 25.9 25.9 24.3 24.6 25.4 25.9 24.9 26.4 20.5 20.4 20.3 20.4 20.7 20.7 20.6 20.5 14.5

0.19 0.13 0.16 0.17 0.09 0.09 0.13 0.1 0.07 0.12 0.16 0.19 0.18 0.26 0.14 0.07 0.19 0.13 0.08 0.11 0.12 0.1 0.05 0.06 0.04 0.09 0.63

0.48 0.2 0.37 0.27 0.09 0.07 0.11 0.14 0.08 0.13 0.27 0.16 0.6 0.11 0.09 0.05 0.17 0.18 0 0.08 0.1 0.08 0 0.1 0 0.08 0.88

8.617 8.731 0.33 0.01 0.208 7.345 11.385 0.32 0 0.036 8.05 10.732 0.41 0.01 0.088 7.981 8.551 0.38 0.01 0.359 7.384 8.977 0.29 0 0.474 6.813 9.018 0.33 0 0.408 6.61 9.092 0.35 0 0.514 6.229 9.047 0.33 0 0.624 6.468 8.934 0.33 0 0.475 6.834 8.752 0.36 0 0.476 8.086 8.329 0.4 0 0.32 8.785 8.521 0.3 0 0.374 9.053 8.657 0.38 0 0.084 10.23 8.923 0.3 0.01 0.308 9.209 9.013 0.31 0 0.397 0 0.379 8.86 9.084 0.33 9.264 9.047 0.3 0 0.362 6.653 8.966 0.29 0.01 0.405 3.333 4.356 0.19 0 0.385 3.311 4.715 0.13 0 0.433 3.491 4.641 0.14 0 0.519 3.294 4.692 0.12 0 0 3.206 4.638 0.14 0 0.602 3.067 4.572 0.12 0 0.582 0.1 3.135 5.049 0 0.306 3.425 4.169 0.21 0 0.583 5.306 1.706 0.07 0 0.306

0.2 0.2 0.28 0.12 0.2

0.04 0.04 0.04 0.01 0

10.18 8.922 8.779 9.514 9.559

0.775 25.9 0.05 0.09 8.919 1.865 24.8 0.09 0.04 11.08 1.175 25 0.12 0.12 11.52 0.609 26 0.03 0.01 10.23 0.913 25.7 0.09 0.08 10.31

0.02

o.of

Si

8.394 8.884 8.901 9.14 8.882

Mn P F 0.32 0 *0.612 0.31 o.oz 0.587 0.3 'o^oi 0.562 O732 0^03 0.432 0.41 0 0.649 0.4 0.22 0.926 0.8 0 0.025 0.37 0.01 0.195 0.44 0 0.097

0.5 0.01 0.047 0.25 0 0.097 0.28 0 0.205 0.44 0.01 0.016 0.26 0 0.066

Co

Ni

Cu

Sum

96.23 r93.65 94.13 91.13 90.37 91.12 98.63 97.07 94.7 99.17 99.73 99.92 99.35 99.22 99.25 100.3 99.92 99.52 100.1 99.66 99.78 99.26 99.76 99.66 99.5 99.32 99.97 96.36 97.06 96.3 97.44 98.73 98.21 96.1 99.22 89.97 98.24 99.07 98.81 99.27 99.1

Pyroxene, amphibole and biotite analyses

Amphibole analyses ---

Sample # SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Mineral

Comments

act? act? ^ act? act? act? act? act? act? act? cpx? cpx? acti, rirn acti, in acti, in acti, in acti, in acti in, hz acti, mz outside act2. near plag2, rim act2, near plag2, in act2, near plag2. Iz are act2, near plag2, ~hz e act2, near plag2, hz cc hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 hbl?1 Hbl2 Hbl2 Hbl2 Hbl2 Hbl2

rim, near bio1 rim, near biol interior interior interior core core core interior interior interior rim rim rim rim interior interior interior near core

Na

CI

Mg

A1

Si

K

Ti

0.26 0.3 0.17 0.27 0.11 0.11 0.12 0.21 0.3 0.1 0.53 0.19 0.1 0.17 0.08 0.25 0.27 0.14 0.18 0.17 0.12 0.26 0.13

0.04 0 0.02 0^01 0.02 0.01 0.01 0.04 0.04 0.01 0.06 0.03 0 0.05 0.13 0.04 0.09 0.02 0 0.02 0 0.02 0.01

9.232 9.83 9.477 9.273 10.16 10.18 10.32 10.14 9.715 9.78 11.83 9.33 9.72 9.81 3.01 8.03 7.65 10.38 9.44 9.1 5.59 9.54 9.88

1.089 0.928 0.756 0.795 0.475 0.819 0.528 1.252 1.481 0.583 1.001 1.88 0.65 0.82 3.3 1.46 2.17 0.7 0.9 1.32 2.82 1.11 0.75

25.4 25.6 25.9 25.6 26.3 26 26.2 25.4 25.1 25.9 25.9 25.5 25.4 25.5 17.1 25.4 24.7 25.8 25.7 25.2 19.9 25.3 25.7

0.12 0.05 0.05 0.09 0.01 0.04 0.04 0.07 0.1 0.05 0.23 0.14 0.02 0.06 0.97 0.1 0.21 0.04 0.12 0.09 0.18 0.1 0.05

0.1 0.06 0.08 0.08 0.05 0 0.08 0.09 0.18 0.06 0.28 0.04 0 0.05 0.04 0.14 0.03 0.05 0.04 0.07 0.08 0.1 0.06

10,64 8.825 0.26 0.01 0.2 "10 8.875 0.22 "o 0.141 10,43 8.83 0.45 0 0.106 10.96 " 8.869 0.21 0 0.171 8.71 8.821 0.94 0.01 0 9.41 9.077 0.28 0 0.048 8.985 8.655 0.49 0 0.048 9.399 8.663 0.36 0.01 0.086 9.832 8.879 0.25 0 0.128 9.716 8.825 0.62 0 0.055 6.282 8.719 0.21 0.01 0.484 9.08 8.68 0.22 0.01 0.03 9.23 9.03 0.28 0 0.09 8.18 8.18 0.5 0.01 0.06 10.59 4.48 0.16 0.1 0 11 8.45 0.25 0 0.16 11.87 7.21 0.26 0 0.25 8.17 8.44 0.48 0 0.14 9.26 8.35 0.48 0 0.16 9.86 8.49 0.43 0.01 0 9.48 5.39 0.29 0 0.07 9.8 9.01 0.28 0 0.22 8.56 8.66 0.49 0.01 0.13

99.01 99.2 99.39 997I"6 99.11 99.52 98.78 98.84 99.01 98.74 99.53 98.15 96.79 95.46 69.45 97.47 96.14 97.13 97.15 97.04 77.9 98.4 96.93

1.2 1.21 1.18 1.38 1.19 1.15 1.18 1.14 1.09

0.06 0.07 0.07 0.08 0.08 0.07 0.07 0.06 0.05 0.06 0.08 0.08 0.09 0.07 0.1 0.03 0.03 0.03 0.05

7.419 7,08 7.206 6.622 7.085 7.234 7.273 7.181 7.341 7.256 6.886 6.984 6.821 7.594 4.293 8.457 8.828 7.979 8.57

5.061 4.112 4.218 5.001 4.191 4.119 4.16 4.093 3.979 4.03 4.258 4.433 4.511 4.863

21 21.3 21.2 20.3 21.1 21.4 21.3 21.3 21.4 21.4 21 21.1 21 22.2 9.58 19.7 19.9 19.1 19.7

0.78 0.74 0.72 0.86 0.74 0.71 0.71 0.72 0.67 0.68 0.76 0.77 0.81 0.81 0.46 0.78 0.75 0.75 0.73

0.64 0.64 0.74 0.9 0.76 0.74 0,71 0.52 0.56 0,65 0.69 0,71 0.76 0.66 1.08 2.13 2.09 2.26 1.99

12.53 12.64 12.42 13.32 12.43 12.43 12.65 12.52 12.59 12.39 12.55 12.83 13.07 12.41 4.984 9.356 8.582 10.16 9.313

98.89 97.29 97.36 97.84 96.96 97.54 97.53 97.01 97.35 97,13 96,66 97,67 97,79 101,2 101.2 97.95 97.33 97.2 97.02

1.13

1.25 1.26 1.24 1.37 0.84 1.95 1.94 1.98 1.92

30.31

5.867 5.647 6.144 5.727

Fe

Ca

8.137 8.122 8.14 8.111 8.156 8.173 8.081 8.207 8.146 8,155 8.191 8.123 8.127 7.918 4.361 7.872 7.859 7.653 7.458

Mn

0.52 0.57 0.54 0.59 0.54 0.54 0.54 0.54 0,55 0,52 0,51 0,56 0,52 0,47 0.07 0.11 0.1 0.13 0.13

P

0 0 0 0.02 0.01 0 0 0.01 0.01 0 0.02 0 0 0 0.02 0.01 0.04 0.03 0.05

F

0.421 0.324 0.355 0.442 0.204 0.37 0.241 0.444 0.377 0.393 0.279 0.316 0.435 0.43 0.169 0.427 0.32 0.377 0.417

Co

Ni

Cu

Zn

Sum

pyroxene, amphibole and biotite analyses

Amphibole analyses Sample # SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Mineral Comments Hbi2 ' near core Hbl2 near core Hbl3 rim fHbl3 rim Hbl3 rim Hbia rim HblS interior Hbia interior HblS core HblS core HblS core HblS core HblS core HblS core HblS interior Hbl3 interior HblS interior HblS rim HblS rim HblS rim HblS rim HblS rim Hbl4 rim Hbl4 rim Hbl4 interior Hbl4 interior Hbl4 interior Hbl4 interior Hbl4 core Hbl4 core Hbl4 core Hbl4 interior Hbl4 interior Hbl4 interior Hbl4 rim Hbl4 rim Hbl4 rim amph rim to mtl 1in

Na CI 1.921 0.04 1.9^ 0.04 M.21 0.07 1.13 0.05 1.15 0.04 1.27 0.05 1.19 0.05 1.14 0.05 1.2 0.08 1.24 0.06 1.16 0.07 1.2 0.09 1.28 0.06 1.23 0.09 1.26 0.08 1.19 0.09 1.19 0.04 1.23 0.08 1.21 0.05 1.19 0.06 1.14 0.05 1.15 0.07 1.13 0.05 1.17 0.06 1.29 0.08 1.16 0.07 1.17 0.07 ^.23 0.08 1.22 0.06 1.17 0.08 1.16 0.07 1.19 0.05 1.11 0.05 1.13 0.05 1.21 0.08 J 1.24 0.06 1.26 0.07 1.24 0.06

A! Ms 8.265 (5.888 7.85S 5.697 8.387 5.051 7.074 4.104 7.088 4.087 6.984 4.282 4.25 6.957 7.054 4.135 6.975 4.256 6.933 4.395 6.903 4.386 6.794 4.444 4.45 6.883 6.895 4.465 6.857 4.486 6.88 4.404 7.105 4.155 6.892 4.338 6.901 4.347 7.05 4.223 7.084 4.106 7.133 4.232 7.294 4.326 7.085 4.214 6.765 4.532 6.961 4.212 4.32 7 6.921 4.288 6.944 4.352 4.2 6.956 6.903 4.416 7.408 3.917 7.235 3.976 7.189 4.022 6.937 4.351 6.991 4.386 6.887 4.505 7.164 4.968

Si 19.6 20 20.6 21.3 21.3 21.1 21 21.4 21 21 21.1 20.8 20.9 20.9 20.9 21 21.2 21 21 21.3 21.2 21.7 21 21.2 20.7 21.2 21 20.9 21 21.1 20.8 21.5 21.4 21.5 21 21.1 21 20.9

K 0.79 0.77 0.74 0.7 0.69 0.75 0.73 0,73 0.74 0.76 0.78 0.79 0.81 0.79 0.81 0.81 0.72 0.78 0.81 0.71 0.73 0.74 0.75 0.74 0.78 0.74 0.75 0.76 0.76 0.74 0.82 0.67 0.69 0.68 0.78 0.78 0.83 0.75

Ti 1.89 1.95 0.79 0.71 0.5 0.68 0.67 0.58 0.62 0.64 0.63 0.73 0.59 0.73 0.68 0.76 0.66 0.66 0.69 0.68 0.53 0.6 0.64 0.67 0.71 0.64 0.74 0.66 0.62 0.63 0.58 0.47 0.58 0.59 0.65 0.6 0.68 0.63

Fe 9.963 9.75J 11.17 12.5 12.45 13.09 13.06 12.73 12.81 IS 12.74 12.91 13.01 13.19 13,07 12.57 12,83 12.79 12.9 12.81 12.51 12.67 12,75 12.64 13.05 12.75 12.95 13 12.85 12.73 13.04 12.82 12.48 12.39 12.8 12.98 12.92 12.66

Ca 7.574 7.54 8.03 8.196 8.033 8.01S 8.133 8.156 8.043 8.209 8,16 8,132 8,117 8,134 8.076 8,116 8.207 8.127 8.152 8.183 8.172 7.865 8.16 8.105 8.05 8.128 8,03 8,113 8,097 8,106 8,148 8,134 8,116 8,104 8,143 8,106 8,158 7.966

Mn 0.14 0.11 0.35 0.56 0.56 0.56 0.54 0.52 0.52 0,6 0,6 0,54 0,57 0,49 0,5 0,54 0,56 0,57 0,52 0.52 0,52 0,56 0,55 0,46 0,52 0,57 0,54 0,49 0,59 0,61 0,6 0.53 0.55 0.61 0.56 0.56 0.53 0.5

P 0.02 0.03 0.01 0.02 0 0 0.02 0 0.01 0.01 0.02 0 0 0 0 0.01 0 0.01 0.01 0 0 0.01 0 0.01 0 0 0 0 0.01 0 0.02 0 0 0.01 0.02 0 0 0.01

F 0.407 0,178 0.72 0.5 0.325 0.294 0.466 0.25 0.317 0.181 0.348 0,295 0,249 0,271 0,121 0.S79 0.385 0.166 0.422 0.317 0.446 0.34 0.408 0.S1 0.241 0.446 0.332 0,429 0.317 0,303 0.429 0.475 0.319 0.402 0.318 0.234 0.4 0.338

Co

Ni

Cu

Zn

Sum 97.35 96.88 97.96 97.33 96.54 97.48 97.35 97.26 96.79 97.64 97.29 96.91 97.25 97.7 97.32 97.02 97.56 97.08 97.33 97.59 96,73 97,99 97.45 97,07 96,95 97,3 97,21 96,97 97,23 96,84 97,18 97,79 96,97 97,16 97,28 97,54 97,67 98,03

Pyroxene, amphibole and biotite analyses

Biotite analyses - -

Sample # SMPG-1 SMPG-I SMPG-i SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1

Mineral bio bio bio bio bio bio bio bio bio bio bio bio bio bio bio2 bio bio bio bio bio bio bio bio bio bio bio bio bio bio bio bio bio

SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

biol biol biol biol biol biol biol biol biol

Comments

Na 0.002 0,002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002

CI 0.318 0.32 0.296 0.294 0.286 0.29 0.303 0.299 0.27 0.275 0.277 0.276 0.281 0.306 0.297 0.027 0.297 0.293 0.327 0.307 0.305 0.28 0.27 0.323 0.27 0.288 0.294 0.335 0.279 0.306 0.352 0.321

Mfi 8.081 8.581 8.657 8.718 8.727 8.755 8.784 8.877 8.758 8.764 8.758 8.772 8.694 8.822 9.067 6.93 8.643 8.368 8.5 8.276 8.529 8.452 8.311 8.159 8.251 8.381 8.519 8.439 9.238 8.379 8.141 8.555

Al 6.769 7.586 7.508 7.641 7.531 7.508 7.505 7.405 7.462 7.443 7.524 7.533 7.5 7.651 7.116 0.931 7.644 7.89 7.95 7.857 7.769 7.718 7.698 7.656 7.56 7.733 7.665 7.612 7.504 7.843 7.957 7.599

Si 16.19 18.05 17.96^ 18.19 18.22 18.06 18.06 18.19 18.06 17.99 18.03 18.08 18.02 18.26 18.34 17.49 17.89 17.78 17.69 17.67 17.78 17.67 17.63 17.56 17.61 17.73 17.62 17.69 18.91 17.65 17.43 17.95

K 6.809 6.417 6.853 6.722 6.806 6.801 6.732 6.708 6.854 6.862 6.787 6.882 6.882 6.788 6.808 0.296 7.7 7.439 7.706 7.464 7.575 7.503 7.577 7.47 7.404 7.52 7.417 7.619 6.793 7.659 7.559 7.351

Ti 2.698 2.789 2.714 2.695 2.86 2.814 2.704 2.821 2.819 2.788 2.806 2.67 2.718 2.857 2.346 0.351 2.384 2.641 2.858 2.802 2.905 2.983 3.004 3.032 2.978 2.933 2.899 2.697 2.281 2.61 2.667 2.725

Fe 11.69 12.21 11.86 11.95 12 12.12 12.19 12.21 11.85 11.82 12.05 12.01 11.95 12.12 11.52 2 12.3 12.19 12.14 12.16 12.16 12.11 12.3 12.33 12.23 12.16 12.29 11.9 11.3 11.98 12.3 12.07

P 0.005 0.006 0.001^ 0 0 0.006 0.002 0 0 0.004 0.002 0 0.004 0.001 0.001 0 0 0.003 0.005 0 0.008 0 0.002 0.003 0.003 0.001 0.001 0 0 0.002 0.007 0.006

F 0.231 0.201 0.239 0.243 0.293 0.299 0.252 0.239 0.289 0.261 0.251 0.238 0.275 0.277 0.226 0.252 0.199 0.188 0.224 0.205 0.173 0.209 0.154 0.153 0.173 0.204 0.168 0.193 0.256 0.196 0.15 0.23

0.002 0.002 0.002 0,002 0.002 0.002 0.002 0.002 0.002

0.254 0.257 0.257 0.241 0.278 0.243 0.276 0.27 0.283

9.118 9.202 9.163 9.081 9.461 9.353 9.076 8.941 9.058

7.369 7.32 7.278 7.241 7.217 7.102 7.177 7.236 7.456

17.98 17.91 17.7 17.56 17.82 17.68 17.63 17.59 17.8

7.573 7.44 7.515 7.627 7.557 7.539 7.581 7.594 7.596

2.729 2.738 2.691 2.671 2.553 2.618 2.628 2.743 2.631

11.13 0 0.038 0.003 11.11 0 0.058 0.007 11.55 0.001 0.026 0.003 11.61 0 0.056 0 11.36 0 0 0.066 11.62 0 0.057 0.004 11.8 0 0.074 0 11.57 0 0.056 0 11.68 0 0.081 0.002

0.665 0.733 0.665 0.716 0.67 0.688 0.642 0.661 0.657

Ca 0.008 0 0 0.001 0.007 0 0 0 0 0 0 0 0 0 0.054 0.233 0.017 0.018 0.012 0.007 0.004 0.003 0 0 0.009 0.011 0.01 0.009 0.006 0 0.012 0.011

Mn 0.039 0.072 0.053 0.073 0.074 0.056 0.063 0.039 0.054 0.055 0.037 0.038 0.038 0.091 0.051 0.03 0.044 0.076 0.032 0.063 0.059 0.042 0.066 0.048 0.033 0.068 0.056 0.031 0.052 0.064 0.093 0.043

Cr

-

Co

Ni

Cu

Zn

Sum 89.19 95.88 r 95.6 96.41 96.76 96.49 96.32 96.71 96.09 95.81 96.25 96.21 95.96 97.39 95.33 54.84 96.69 96.48 97.25 96.28 97.04 96.53 96.51 96.02 95.75 96,63 96.44 95.8 97.08 96.06 95.85 96.51 96.47 96.31 96.17 95.91 96.46 96.17 96.02 95.74 96.8

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

Mineral biol biol biol biol biol biol biol biol biol biol biol bio2 bio2 bio2 bio2 bio2 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio3 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4 bio4

Comments

Na 0.0(» 0.00? 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

CI 0.261 0.268 0.253 0.253 0.274 0.25 0.27 0.261 0.27 0.272 0.276 0.267 0.25 0.266 0.292 0.247 0.296 0.291 0.28 0.271 0.278 0.26 0.266 0.257 0.258 0.267 0.259 0.254 0.249 0.252 0.225 0.258 0.282 0.28 0.273 0.284 0.254 0.287 0.296 0.3 0.277 0.274

Mg 8.939 9.002 9.349 9.399 9.62 9.472 9.223 9.465 9.346 9.336 9.137 8.436 8.641 8.623 8.87 9.564 8.801 8.898 8.742 8.881 8.965 9.02 8.954 8.895 9.096 8.988 8.875 8.749 9.539 9.327 9.432 9.353 9.24 9.243 9.412 9.284 9.518 9.333 8.917 8.83 8.934 9.114

A1 7.249 7.307 7.108 7.258 7.236 7.002 7.217 7.288 7.328 7.302 7.303 7.166 7.101 7.084 7.249 7.214 7.347 7.259 7.197 7.405 7.339 7.22 7.303 7.374 7.395 7.389 7.322 7.329 7.115 7.181 7.144 7.191 7.445 7.275 7.125 7.255 7.532 7.315 7.51 7.312 7.419 7.129

Si 17.55 17.81 17.54 17.85 17.98 17.59 17.74 17.94 17.88 17.85 17.86 17.14 17.35 17.26 17.69 18.32 17.76 17.79 17.6 17.56 17.75 17.69 17.62 17.56 17.77 17.52 17.53 17.41 18.35 17.69 17.74 17.69 17.91 17.71 17.74 17.76 17.96 17.69 17.86 17.69 17.8 17.76

K 7.645 7.481 7.489 7.393 7.481 7.397 7.452 7.624 7.487 7.541 7.577 7.555 7.414 7.571 7.512 7.221 7.811 7.731 7.71 7.796 7.713 7.888 7.6 7.711 7.694 7.639 7.664 7.79 7.585 7.739 7.754 7.675 7.729 7.569 7.633 7.547 7.803 7.687 7.678 7.7 7.706 7.547

Ti 2.874 2.824 2.506 2.544 2.589 2.545 2.82 2.586 2.62 2.605 2.919 2.796 2.84 2.964 2.738 2.455 2.837 2.855 2.947 2.775 2.77 2.871 2.918 2.843 2.922 2.771 2.916 2.844 2.619 2.822 2.643 2.796 2.624 2.966 2.595 2.658 2.784 2.514 2.863 2.872 2.882 2.745

Fe 11.55 11.6 11.48 11.4 11.58 11.5 11.31 11.62 11.4 11.51 11.62 11.24 11.19 11.28 11.32 10.54 11.86 11.72 11.69 11.93 11.58 11.76 11.85 11.83 11.78 11.72 11.68 12.04 11.16 11.62 11.63 11.89 11.8 11.61 11.53 11.6 11.53 11.58 11.78 11.71 11.74 11.92

Ca 0 0 0 0 0 0 0 0 0 0 0 0 0.009 0 0.001 0.003 0.02 0.021 0.001 0.051 0.004 0.004 0.011 0.038 0.012 0.015 0.014 0.009 0.019 0.033 0.007 0.021 0.012 0.011 0 0.019 0.002 0.007 0.019 0.015 0.012 0.022

Mn 0.063 0.072 0.076 0.076 0.072 0.072 0,058 0.049 0.063 0.07 0.073 0.07 0.044 0.043 0.039 0.058 0.07 0.032 0.059 0.055 0.07 0.076 0.071 0.094 0.055 0.07 0.075 0.038 0.046 0.087 0.095 0.092 0.07 0.098 0.076 0.094 0.057 0.105 0.087 0.037 0.059 0.071

P 0 0 0.001 0 0 0 0.001 0 0 0.003 0 0.001 0 0 0 0.005 0.001 0 0 0 0 0.005 0.002 0 0.001 0 0.003 0.003 0.003 0.002 0 0.001 0 0 0.007 0.003 0 0 0 0.008 0.002 0

F 0.666 0.693 0.718 0.646 0.723 0.706 0.698 0.652 0.701 0.695 0.729 0.601 0.57 0.664 0.532 0.827 0.588 0.681 0.585 0.599 0.572 0.643 0.656 0.634 0.566 0.626 0.575 0.633 0.673 0.575 0.653 0.652 0.623 0.596 0.705 0.611 0.599 0.66 0.627 0.641 0.597 0.703

Cr

Co

Ni

Cu

Zn

Sum 95.93 96.54 95.5 96.3 97.41 95.56 96.17 97.26 96.7 96.78 97.21 93.36 93.82 94.17 95.31 96.19 96.87 96.73 95.93 96.66 96.46 96.89 96.63 96.55 97.3 96.24 96.15 96.17 97.39 96.85 96.82 97.21 97.57 96.98 96.48 96.58 98.23 96.58 97.43 96.45 97.07 96.69

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

Mineral bio5 bio5 bio5 bio5 bio5 bio5 bio6 bio6 bio6 bio6 bio6 bio6 bio7 bio7 bio7 bio8 bio8 bio8 bio8 bio8 bio8

SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3 SMPG-3

biol N biol N biol E biol E biol E biol E biol W biol W biol W bio3 bio3 bio3 bio5 bio5 bio5 bio5 biol biol biol bio next to chl

Comments

Na 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

CI 0.275 0.257 0.249 0.28 0.243 0.295 0.273 0.249 0.269 0.254 0.26 0.265 0.246 0.3 0.262 0.285 0.265 0.26 0.261 0.286 0.261

Mg Al 9.126 7.506 9.421 " 7.^1 9.095 '7.302 8.843 7.14 9.034 7.234 9.01 7.332 9.639 7.148 9.181 7.113 9.144 7.372 9.44 7.229 9.319 7.162 8.926 7.208 9.219 7.314 8.998 7.105 9.151 7.132 9.098 7.486 9.121 7.28 9.189 7.346 8.927 7.425 8.982 7.359 8.972 7.377

Si

K

18.15 17.85 17.64 17.52 17.66 17.89 18.44 17.59 17.8 17.77 17.62 17.44 17.8 17.51 17.68 17.94 17.64 17,63 17.86 17.63 17.68

7.64 7.643 7.816 7.659 7.843 7.801 7.713 7.563 7.622 7.797 7.611 7.601 7.756 7.827 7.522 7.619 7.636 7.874 7.631 7.751 7.65

Ca Ti Fe 2.771 11.83 0 2.969 " 11"78 0 2.837 11.36 0.022 2.836 11.89 0.008 2.849 11.64 0.006 2.708 11.8 0.002 2.556 10.96 0.033 2.748 11.61 0.032 2.793 11.37 0.024 11.3 0.025 2.781 2.821 11.23 0.007 2.919 11.51 0,027 2.767 11.46 0.008 2.78 11.33 0.017 2.709 11.66 0 2.962 11.49 0.017 2.772 11.44 0.014 2.926 11.25 0.01 2.947 11.63 0,023 2.887 11.57 0,009 2.775 11.69 0,005

Mn 0,045 0,074 0.05 0.046 0.086 0.104 0.025 0.038 0.079 0.035 0.095 0.047 0.085 0.065 0.049 0.037 0.071 0.049 0.061 0.053 0.062

0.003 0.002 0 0.005 0.003 0.001 0.001 0.008 0 0 0.004 0 0.005 0.004 0 0.001 0.002 0 0 0.003 0

F 0.677 0.724 0,702 0,636 0,659 0,618 0,817 0,668 0,744 0,786 0,664 0,64 0,703 0,691 0,641 0,638 0,662 0,688 0,616 0,601 0,692

0.156 0.163 0.155 0.173 0.151 0.158 0.139 0.17 0.155 0.158 0.151 0.178 0.152 0.151 0.134 0.152 0.152 0.177 0.171 0.172

0.099 0.3 0.176 0.281 0.097 0.164 0.177 0.098 0.414 0.213 0.085 0.268 0.076 0 0 0.199 0.269 0.232 0.107 0.307

10.42 10.41 10.18 10.07 9.901 10.06 10.11 10.25 10.33 10.29 10.32 10.12 10.65 10.32 10.37 10.31 10.22 10.14 9.995 10.41

17.86 17.72 17.4 17.34 17.2 17.47 17.6 17.34 17.55 17.41 17.52 17.29 17.82 17.58 17.63 17.51 17.18 17.2 17.02 17.55

6.747 7.729 7.774 7.791 7.914 7.834 7.767 7.864 7.719 7.846 7,987 8.087 7.777 7.792 7.942 7.91 7.641 7.588 7.645 7.789

2.855 2.873 2.74 2.922 2.873 2.735 2.717 2.822 2.775 2.831 2.872 2.761 2.361 2.72 2.761 2.68 2.721 2,765 2.963 2.771

0,019 0,017 0,026 0,015 0,019 0,018 0,023 0,018 0.014 0.008 0.003 0.012 0 0 0 0 0.014 0.026 0.015 0,009

0.05 0,039 0.044 0.071 0.029 0.032 0.02 0.04 0.03 0.066 0.053 0.051 0.022 0.042 0.055 0.056 0.051 0.037 0.029 0.02

0 0.004 0 0.002 0 0.004 0.003 0.007 0.002 0 0 0 0.001 0.003 0.005 0.004 0 0.009 0 0

0,825 0,89 0,834 0,844 0,778 0.797 0.871 0.833 0.814 0.823 0.8 0.807 0.907 0.867 0.825 0.814 0.825 0.905 0.713 0.865

7.525 7.566 7.667 7.591 7.512 7.523 7.682 7.565 7.526 7.426 7.599 7.405 7.203 7.501 7.653 7.533 7.536 7.489 7.454 7.702

9.283 9.12 9,158 9.176 9.41 9.19 9.114 9.313 9.239 9.115 9.338 9.054 8.184 8.683 8.893 8.827 9.068 8.964 9.443 9.162

P

Cr

Co

Ni

Cu

Zn

Sum 98.21 98.02 96.41 95.87 96.63 97.2 97.75 95.95 96.78 97 96.07 95.57 96.97 95.56 96.02 97.5 96.21 96.69 97.1 96.52 96.57 96.35 97.37 96.22 96.29 95.64 96.18 96.38 96.39 96.97 96.29 97.3 95.79 94.49 95.69 96.69 95.95 95.38 95,09 94,94 96,93

pyroxene, amphibole and biotite analyses

Biotite analyses

Comments

Sample # SMP'G-3

Mineral biol N

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

biol cluster biol cluster biol cluster biol clusterN biol cluster N biol clusterN biol cluster biol cluster biol cluster biol 1 big biol big biol big biol big biol big biol big biol big biol big biol big biol small bio near big bio small bio near big bio small bio near big bio bio2 area bio2 area bio2 area bio3 bio3 bio3 bio3 bio3 possible hbl or bio, interf possible hbl or bio, interf possible hbl or bio, interf possible hbl or bio, interf near bio4 near bio4 near bio4 near bio4 bio?, strange grain on bic bio5 1

Na CI Mg 0.173 0.223 10.44

Al 7.526

Si K 17.39 7.613

Tl Fe Ca Mn P 2.8221 9.315 0.003 0.034 0.011

F 0.863

0.16 0.162 0.149 0.162 0.108 0.132 0.167 0.174 0.179 0.16 0.14 0.147 0.165 0.168 0.144 0.172 0.157 0.166 0.134 0.17 0.166 0.149 0.154 0.156 0.119 0.167 0.177 0.151 0.159 0.132 0.094 0.138 0.126 0.132 0.153 0.153 0.14 0.142 0.134 0.169

7.073 7.142 7.216 7.041 7.016 7.079 7.207 7.137 7.178 7.149 7.691 7.643 7.789 7.721 7.817 7.72 7.641 7.61 7.621 7.552 7.459 7.523 7.513 7.697 6.796 7.337 7.401 7.329 7.476 7.554 6.056 6.998 6.476 7.68 7.588 7.515 7.118 7.495 7.615 7.501

17.07 17.1 17.22 17.05 16.94 16.94 17.03 17.07 16.93 16.9 18.85 18.71 18.81 18.69 18.52 18.7 18.67 18.7 18.66 18.28 18.44 18.27 18.43 18.54 18.66 18.13 18.4 18.23 18.42 18.39 16.05 19.32 17.31 19.6 18.58 18.52 19.34 18.42 18.61 18.5

3.034 3.016 2.916 2.96 3.034 2.974 2.865 2.885 2.903 2.889 2.762 2.685 2.671 2.724 2.788 2.73 2.718 2.62 2.87 2.964 2.818 2.914 2.679 2.661 2.315 2.592 2.75 2.717 2.791 2.671 2.443 2.448 2.393 2.365 2.81 2.753 2.411 2.644 2.669 2.762

0.556 0.642 0.571 0.585 0.611 0.671 0.495 0.515 0.534 0.497 0.786 0.797 0.77 0.738 0.728 0.793 0.776 0.711 0.77 0.838 0.9 0.917 0.772 0.819 0.923 0.728 0.757 0.73 0.734 0.7 0.575 0.823 0.644 0.901 0.861 0.795 0.959 0.775 0.757 0.884

0.214 8.484 0.222 8.531 0.185 ^8.738 0.217 8.457 0.013 8.205 0.134 8.385 0.277 8.573 0.218 8.442 0.234 8.578 0.072 8.559 0.19 10.88 0.194 10.86 0.187 11.02 0.18 10.9 0.17 10.72 0.206 10.79 0.194 10.74 0.208 10.69 0.229 10.55 0.165 10.78 0.168 10.93 0.175 10.68 0.204 10.43 0.199 10.68 0.178 10.88 0.217 9.833 0.227 10.13 0.228 9.866 0.231 9.981 0.214 9.904 0.277 8.42 0.185 10.91 0.196 9.52 0.175 11.16 0.189 10.54 0.211 10.61 0.2 11.24 0.193 10.48 0.216 10.52 0.222 10.46

8.014 7.843 7.952 7.893 7.989 7.9 7.922 7.947 7.851 7.889 5.549 5.671 5.587 5.751 5.796 5.706 5.771 5.613 5.824 6.915 7.403 7.137 6.594 6.631 6.646 5.971 5.955 6.006 5.764 5.905 5.33 5.333 6.29 6.044 6.359 6.635 6.314 6.54 5.749 6.696

13.15 12.97 13.01 13 13.33 13.04 12.94 13.28 12.87 12.93 8.595 8.615 8.768 8.815 8.806 8.994 9.144 9.26 9.406 8.778 8.599 8.831 9.101 9.391 8.381 10.14 10.44 10.21 10.38 10.03 8.9 8.816 8.748 8.301 9.407 9.643 8,959 9.409 9.551 9.483

0.007 0.012 0.022 0.05 0.019 0.036 0.011 0.012 0.014 0.013 0 0.007 0.01 0.008 0.008 0.017 0.007 0.007 0.009 0.006 0.02 0.008 0.023 0.015 0.048 0.005 0 0.013 0 0.001 0.006 0.005 0.004 0.001 0.032 0.035 0.035 0.028 0.002 0.022

0.188 0.223 0.229 0.232 0.238 0.211 0.211 0.244 0.239 0.263 0.072 0.075 0.08 0.058 0.07 0.072 0.073 0.051 0.066 0.102 0.091 0.084 0.038 0.045 0.029 0.053 0.051 0.076 0.064 0.036 0.047 0.034 0.048 0.027 0.064 0.057 0.055 0.035 0.081 0.045

0 0 0.001 0 0 0 0.003 0.001 0.002 0.001 0 0.001 0 0.002 0.003 0.001 0 0 0.003 0 0 0.003 0.001 0.001 0.002 0 0.003 0.004 0.001 0.001 0 0.004 0 0.003 0 0 0.005 0.003 0.004 0.001

Cr

Co

Ni

Cu

Zn

Sum "T677 97.29 97.48 98.06 97.04 96.73 96.85 97.15 97.44 96.86 96.52 96.5 96.15 96.99 96.68 96.34 96.82 96.72 96.38 97.01 97.17 97.79 97.23 96.31 97.73 94.82 94.76 96.61 95.4 96.31 95.64 82.73 95.73 88.96 98.15 97.38 97.74 98.08 96.57 96.58 97.39

U) o

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample #

Mineral

Comments

Na

CI

Mg

A!

Si

K

Ti

Fe

Ca

Mn

P

F

Cr

Co

Ni

Cu

Zn

Sum

SMPW-la SMPW-ia SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la

little bii little bi( bio? bio? bio? bio? bio? small bio

0.124 0.099 0.204 0.084 0.181

0.055 0.052 0.061 0.062 0.059

8.035 8.154 7.97 8.138 7,445

6.918 8.088 7.897 7.482 7.047

17.27 6.966 17.49^ 6.931 16.68 7.081 17.07 7.116 16.57 ITM2

2.528 2.455 2.791 2.507 2.533

14.31 14.54 13.36 13.59 15.06

0.024 0.048 0.049 0.075 0.093

0.36 0.365 0.292 0.286 0.358

0.002 0.002 0.024 0.015 0.007

0.807 0.847 0.523 0.4 0.465

95.9 ^98.95 95.56 95.46 94.87

SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a

bio bio bio biol biol biol biol biol biol

0.165 0.092 0.111 0.23 0.199 0.205 0.194 0.175 0.132

0.229 0.255 0.267 0.288 0.257 0.264 0.275 0.27 0.251

10.21 10.03 9.366 9.563 10.08 10.25 9.558 10.42 10.11

7.115 6.7 6.813 7.323 7.215 7.254 7.277 7.826 7.682

18.29 18.46 17.75 17.48 18.01 18.17 17.88 18.6 18.51

8.087 7.96 8.137 7.941 8.014 7.933 7.796 7.212 7.16

2.995 2.972 3.185 3.566 3.486 3.424 3.496 3.487 3.23

10.39 10.4 11.27 10.27 9.587 9.59 11.05 10.64 11.52

0.068 0.084 0.055 0 0.022 0.027 0.023 0.089 0.196

0.179 0.172 0.16 0.099 0.084 0.095 0.127 0.127 0.128

0.004 0.001 0.002 0 0 0 0 0.003 0.003

1.583 1.128 1.006 0.762 0.756 0.81 0.639 0.843 0.732

100.3 98.97 98.05 98.04 98.9 99.54 99.55 102.4 102.1

SMNA-2b SMNA-2b SMNA-2b SMNA-2b

147-reaI bio? bio2 rim 148-real bio? bio2 149-real bio? bio2 150-real bio? bio2

0.19 0.24 0.30 0.28

0.189 0.185 0.156 0.158

8.47 9.34 9.22 9.19

6.49 6.65 6.42 6.58

14.69 14.44 14.75 14.62

4.60 4.49 4.53 4.50

1.79 1.66 1.73 1.67

4.76 4.24 4.03 4.24

b.d. b.d. b.d. b.d.

0.982 1.208 1.107 0.970

96.82 98.11 97.21 97.53

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-I SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

biol biol biol biol biol biol Bio2 Bio2 Bio2 Bio2 Bio2 Bio2 Bio2 Bio2 Bio3 Bio3 Bio3

0.23 0.24 0.23 0.24 0.24 0.23 0.26 0.22 0.24 0,26 0.27 0.25 0.28 0.24 0.31 0.20 0.24

0.08 0.09 0.08 0.07 0.08 0.10 0.09 0.10 0.11 0.09 0.09 0.11 0.11 0.11 0.09 0.07 0.08

7.80 7.73 7.69 7.67 7.41 7.59 6.80 7.76 7.08 8.16 7.55 7.87 7.38 6.79 8.04 6.22 6.65

7.73 7.64 7.41 7.66 7.52 7.68 8.55 8.46 10.59 9.47 9.24 8.58 10.42 8.55 13.79 18.10 16.84

17.33 17.26 17.15 17.15 17.29 17.21 16.32 17.11 15.52 16.70 17.02 16.91 16.70 14.95 15.83 14.36 14.24

7.350 7.308 7.460 7.273 7.622 7.687 7.226 7.528 7.142 7.515 7.357 7.056 6.928 7.265 6.741 5.779 6.153

2.154 2.103 2.1,58 2.211 2.267 2.216 2.059 2.169 2.014 2.102 2.190 2.175 2.174 2.229 2.023 1.662 1.807

14.02 14.20 14.31 14.32 14.70 14.41 13.69 14.34 13.35 14.12 14.01 13.80 12.98 14.27 10.76 9.92 11.48

0.71 0.44 0.64 0.58 0.50 0.55 0.36 0.40 0.23 0.48 0.49 0.55 0.58 0.39 1.22 0.43 0.58

96.37 96.01 95.63 95.99 96.56 96.58 93.22 97.58 95.13 99.04 98.13 96.64 97.61 91.37 100.3 98.85 99.6

rim interior interior core interior interior near rim rim rim rim rim

b.d. b.d. b.d. b.d. 0.11 0.14 0.09 0.11 0.04 0.04 0.09 0.03 0.10 0.07 0.12 0.17 0.16 0.09 0.07 0.19 0.10

0.06 0.05 0.04 0.05 0.25 0.32 0.26 0.30 0.35 0.29 0.25 0.27 0.27 0.28 0.24 0.25 0.23 0.28 0.24 0.20 0.19

0.01 0.00 O.OOj 0.00 0.01 0.02 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.00

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMRN-l SMRN-1 SMRN-l SMRN-1 SMRN-l SMRN-1 SMRN-1 SMRN-I SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Mineral Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3 Bio3

Na " 0.23 0.21 0.22 0.27 0.20 0.29 0.25 0.22 0.25 0.28 0.25 0.29 0.27 0.22 0.27

CI 0,10 0,07 0.09 0.11 0.09 0.10 0,09 0,09 0,09 0,10 0,08 0,08 0.08 0.11 0.08

Mg 6,66 5,69 6,82 7,36 7,39 7,23 7,18 6,87 7,15 7,41 7,48 7,24 7,61 6,51 7,42

Al 12.07 19.45 11.43 8.03 9.28 8.93 11.09 9.63 8.48 8.74 11.55 9.02 8.64 13.84 10.27

Si 15,55 13,68 16.25 17.57 16.59 17.21 15.66 16.56 16.62 17,31 16.04 16,93 17,24 14,85 17.03

K 6^796 5,716 6,887 7,473 7,455 7,508 7,067 7,146 7.401 7.414 7.183 7.383 7.454 6.641 7.006

Ti 2,010 1,723 1,874^ 2,303 2,175 2,092 2,024 2,224 2,325 2,076 1,962 2,084 2,149 1,941 1.978

Fe 13,72 11,16 13,52 14,86 14,43 14,41 13,96 14.43 15,16 14.44 13.71 14,39 14,40 12,48 13,91

Ca Mn 0.11 0.08 0,26 0.08 0,27 0.03 0,30 0.03 0,30 0,04 0,32 0,07 0,28 0,06 0.27 0,05 0.29 0,08 0.28 0,07 0.32 0.04 0.23 0.06 0.27 0.11 0,28 0.16 0,29

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

biol rir rim biol in interior, darkban biol CO core biol CO core biol in interior biol in interior biol in interior biol in interior biol in interior biol in interior biol rin rim biol rir rim bio2 CO core bio2 CO core bio2 in interior bio2 in interior bio2 rin rim bio2 rin rim bio3 rin rim

0.73 0.16 0.08 0.15 0.18 0.14 0.09 0,14 0.14 0,11 0,13 0.12 0.23 0,26 0,12 0,07 0,10 0,16 0.23

0.030 0,057 0,073 0.062 0,046 0.069 0.062 0.075 0.063 0.059 0,062 0,086 0.061 0,056 0,059 0,067 0,095 0,062 0,111

3,42 7,77 7,67 6,97 7,51 5,73 7,42 7,09 7,36 6,07 7,08 7,35 8,29 7,80 7,93 7,29 8,30 7,71 0,32

12.02 10.37 8.10 14.24 11.70 20.75 11.62 11.43 11.23 17.58 14,14 11,46 8,74 10,70 9,72 10,62 10,02 9,05 48,95

22.58 16.44 17.31 14.39 15.38 12.07 15.39 14.88 15.60 12.56 15.38 15.73 17.65 16,65 16.53 15,64 17,04 16,72 2,91

7.56 6.94 7.25 6,45 6,80 5,46 7.16 6.86 6.94 6,19 6,53 6,80 6,49 6,64 7,22 7,07 7,26 7,27 0,04

1.03 2.51 2.39 2.41 2.47 1.93 2.37 2.65 2.69 2,19 2,14 2,34 2,54 2,46 2,61 2,49 2,36 2,42 0,03

6,09 12,81 12,82 11,37 12.08 9.77 12.08 13.03 12,99 11,37 12,01 12,80 13,53 13,19 13,29 12,70 13,29 13,57 0,45

0.14 0.12 0.15 0.14 0.10 0.20 0.10 0.05 0.08 0,11 0,13 0,19 0,15 0,11 0,15 0,09 0.12 0.06 0.39

0,14 0,33 0,33 0,33 0,32 0,30 0,31 0,43 0,35 0,29 0,34 0,38 0.38 0.38 0.30 0.32 0.42 0.39 0.03

SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1?

biol biol biol bio2 bio2 bio2

0.06 0.07 0.05 0.05 0.05 0,06

0,271 8.88 0.265 9.03 0.267 8.86 0.302 10.23 0.323 9.62 0,281 9.69

6,43 6,46 6,69 6,20 6,67 6,63

17.61 17.70 17.31 18.26 17.59 17.82

7,71 7,86 7,68 7,71 7,95 7,84

2,54 2,42 2,72 2.20 2.55 2,45

11,12 11,06 10,58 9.70 10.22 10.54

0.03 0.03 0.02 0.01 0,00 0,01

Comments interior interior interior interior interior interior core core core interior interior interior rim rim rim

rim to chl2 in core rim to chl3 in core

Cr

Co

P 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.02 0.00 0.00 0.00 0.01 0.02 0.03 0.04

F 0.50 0.26 0.64 0.58 0.62 0.51 0.44 0.32 0.50 0.56 0.48 0.48 0.43 0.29 0.40

0.008 0.007 0.006 0.003 0.013 0.024 0.008 0.011 0.013 0.003 0.029 0.014 0.000 0.018 0.005 0,000 0,001 0.013 0,018

0.205 0.609 0.801 0.606 0,567 0,356 0,699 0,665 0,587 0,360 0.610 0.710 0.868 0.520 0.572 0.602 0.927 0,766 0,008

96.88 97.87 95.55 96.88 96.49 98.09 96.45 95.90 97.53 96.82 99.49 97.48 99.02 99.23 98.20 95.65 100.37 97.23 100.94

0.21 0,01 0.21 0 0.19 0 0.22 0.005 0.21 0 0.28 0

0,375 0.534 0.515 0.554 0.439 0.376

93.22 93.72 92.60 94.08 93.99 94.69

'021

Ni

Cu

Zn

Sum ^ 97.^ 100.5 97.7 98.11 97,61 97.97 97.35 96.92 96.87 98.06 99.29 97.22 98,07 97,13 99,13

U) ts)

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1 ? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1? SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mineral Comments bio3 rim big bio3 in big near core big bio3 core big bio3 rim to chl near a bio4 in near apl bio4 bio4 near core core bio4 rim biol biol in in, rim biol rim bio2 bio2 in in near core bio2 core bio2 in near core bio2 bio2 in bio2 rim rim biol biol in biol in core biol core biol core biol biol in near rim biol biol in near rim biol biol rim relic in chl biol relic in chl biol biol rim biol in biol in biol in biol in biol in biol core biol core biol core biol in biol in

Na 0.05 0.06 0.10 0.07 0.06 0.06 0.08 0.06 0.06 0.04 0.06 0.04 0.05 0.05 0.06 0.07 0.05 0.03 0.10 0.05 0.10 0.08 0.08 0.09 0.09 0.05 0.08 0.07 0.07 0.07 0.03 0.08 0.05 0.07 0.07 0.09 0.06 0.09 0.12 0.09 0.12 0.12

CI 0.324 0.318 0.306 0.295 0.305 0.303 0.270 0.292 0.314 0.314 0.265 0.310 0.293 0.296 0.283 0.306 0.263 0.301 0.281 0.289 0.275 0.282 0.282 0.265 0.289 0.277 0.279 0.269 0.276 0.312 0.246 0.292 0.278 0.297 0.311 0.343 0.289 0.372 0.286 0.275 0.297 0.304

Mg 10.1 f 10.42

lo.is^ 9.73 9.70 9.99 9.83 9.14 10.00 10.68 10.68 10.93 10.98 10.62 10.65 10.62 10.07 9.55 8.48 8.98 8.90 9.05 8.77 8.65 9.77 9.09 9.24 9.06 9.10 8.10 9.09 8.52 8.46 8,58 9.01 8.87 9.04 8.95 8.98 8.94 8.88 9.14

A! 6.39 6.28 6.25 6.26 6.41 6.41 6.31 6.46 6.80 6.65 6.35 6.54 6.49 6.46 6.43 6.46 6.78 6.50 5.79 6.09 6.10 6.06 6.03 6.02 6.66 6.16 6.37 6.17 6.17 6.21 6.78 6.77 6.68 6.94 6.84 6.91 6.85 7.02 6.92 6.91 6.84 7.10

Si 18.15 18.24 17.82 17.96 17.83 18.14 18.31 17.52 18.28 18.92 18.44 18.59 18.63 18.36 18.47 18.38 17.97 17.63 15.79 16.77 16.74 16.51 16.15 16.08 16.97 16.62 16.46 17.11 17.10 15.92 14.97 17.60 17.41 17.78 17.97 17.76 17.89 17.65 17.62 17.55 17.59 17.78

K 7.91 7.84 7.69 7.91 7.80 7.74 7.65 7.98 7.46 7.46 6.98 7.87 7.73 7.77 7.91 7.84 7.41 7.84 6.64 6.80 6.81 6.78 6.87 6.71 6.45 6.54 5.03 6.70 6.62 6.78 5.59 7.54 7.57 7.55 7.55 7.53 7.52 7.49 7.58 7,43 7.33 7.44

Ti 1.82 1.74 1.83 2.06 2.04 2.27 2.29 2.56 1.68 1.63 1.50 1.75 1.76 1.80 1.92 1.81 1.72 2.07 1.77 1.80 1.84 1.93 1.95 1.94 1.78 1.92 1.82 1.88 1.90 1.83 1.41 2.22 2.71 2.99 2.91 2.93 2.90 3.09 2.88 2.96 2.85 2.86

Fe 9.44 9.39 9.39 10.58 10.19 10.08 10.28 10.95 10.86 10.15 10.07 9.38 9.40 9.16 9.47 9.44 10.05 10.22 8.28 8.36 8.75 8.38 8.51 8.39 8.70 8.63 8.38 8.67 8.55 9.13 9.52 11.76 11.34 11.03 10.56 10.42 10.28 10.17 10.38 10.41 10.02 10.38

Ca 0.00 0.00 ' 0.06 0.02 0.02 0.01 0.05 0.00 0.17 0.00 0.02 0.03 0.01 0.01 0.00 0,01 0,02 0,02 0.07 0.00 0.04 0.01 0.00 0.02 0.08 0.04 0.07 0.02 0.03 0.00 0.00 0.03 0.02 0.01 0.03 0.00 0.02 0.00 0.00 0.00 0.01 0.01

Mn 0.20 0.20 0.23 0.22 0.19 0.19 0.18 0.23 0.22 0.22 0.24 0.16 0.21 0.19 0.17 0.19 0.22 0.21 0.19 0.18 0.18 0.16 0.21 0.15 0.15 0.19 0.16 0.20 0.17 0.22 0.24 0.24 0.19 0.21 0.21 0.17 0.19 0.18 0.19 0.17 0.17 0.21

P 0.001 0.001

"o 0 0.005 0 0 0 0.007 0.006 0 0.01 0 0 0 0 0.017 0 0.00 0.01 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

F 0.545 0.453| 0.939 0.648 0.421 0.629 0.735 0.108 0.41 0.466 0.403 0.668 0.523 0.417 0.424 0.5 0.451 0.407 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

o.obo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.252 0.000 0.190 0.000

Cr

Co

Ni

Cu

Zn

Sum 1 93.28 93.44 92.62 93.94 93.09 94.50 94.71 93.48 95.38 96.40 93.85 95.65 95.57 94.03 95.00 94.61 93.55 92.71 81.09 84.77 85.24 84.52 83.59 82.78 87.67 85.03 83.06 86.22 86.05 82.82 81.78 93.14 92.67 94.26 94.49 93.75 93,90 93.79 93.75 93.26 92.49 94.38

Pyroxene, amphibole and biotite analyses

Biotite analyses

1

Sample # SMCA-I SMCA-I SMCA-I SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Mineral Comments biol in biol in biol near rim biol near rim biol rim bio2 rim bio2 in [ bio2 core bio2 in | bio2 rim

SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

biol rim biol near rim biol in biol in biol in biol in biol in biol in biol in biol in biol near core biol core biol core biol in biol in biol in biol in biol in biol in biol in biol near rim biol rim biol rim bio2 rim bio2 near rim bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in

Na 0,13 0.13 0.07 0.08 0.08 0.05 0.07 0.06 0.07 0.07

CI 0.342 1 0,284 0.295 0.288 0.306 0.308 0.293 0.283 0.317 0.301

Ms 9.02 8.85 9.06 9.00 8.89 8.52 8.28 8.75 8.58 8.59

A1 7.11 6.98 7.00 7.10 7.11 6.76 6.75 6.68 6.80 6.75

Si 17.49 17.42 17.69 17.54 17.40 18.04 17.79 18.04 17.97 18.21

K 7.40 7.44 7.40 7.48 7,53 7.56 7.61 7.52 7.65 7.50

Ti 3.07 2.95 3.02 3.04 2.82 2.50 2.62 2.82 2.68 2,65

Fe 10.28 10.23 10.19 10.49 10.23 11.88 11.65 11.50 11.45 11.10

Ca Mn 0.00 0.18 0,02 0.17 0.00 0.19 0.02 0.20 0.04 0.13 0.05 0,31 0.03 0.25 0.01 0.28 0.00 0.26 0.01 0.22

P 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02

F 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0.000

0.09 0.17 0.16 0.14 0.14 0.14 0.13 0.17 0.15 0.15 0.14 0.19 0.18 0.14 0.17 0.09 0.12 0.11 0.14 0.14 0.15 0.10 0.09 0.10 0.15 0.16 0,09 0.11 0.18 0.19 0.09

0.325 0.346 0.347 0.335 0.357 0.314 0.370 0.352 0.328 0.387 0.339 0.344 0.357 0.347 0.358 0.354 0.333 0.370 0.355 0.386 0.365 0.341 0.350 0.320 0.331 0.329 0.333 0.346 0.322 0,339 0.313

10.99 9.30 10.53 10.32 9.16 8.76 8.75 8.90 8.51 8.80 9.17 8.81 8.69 8.63 8.64 9.40 9.00 8.81 9.00 9.24 9.31 9.77 10.12 11.93 11.04 10.75 10.99 10.86 10.57 11.08 11.71

7.18 7.01 7.26 6.63 7,18 7.07 7.15 7.12 7.05 7.19 7.12 7.19 7.11 7.25 7.18 6,75 7.18 7.09 7.05 7.11 7.17 6.77 6.94 7.15 6.79 6.84 6.76 6.76 6.51 6.71 6.71

19.74 18.15 18.21 18.80 17.70 17.55 17.45 17.35 17.31 17.42 17.71 17.68 17.35 17.43 17.52 18.02 17.61 17.65 17.56 17.30 17.74 18.19 18.24 19.18 18.53 18.81 18.59 18.81 18.69 18.74 18.87

7.67 7.64 7.90 7.64 7.85 7.80 7.70 7.70 7.52 7.67 7.77 7.70 7.50 7.61 7.56 7.74 7.66 7.73 7.74 7.71 7.79 7.89 7,83 7.83 7.97 7.97 8.12 7.92 7.80 7.86 8.18

2.74 2.87 2.92 2.59 2.79 2.93 2.97 2.89 2.75 2.84 2.92 2.95 2.95 2,76 2.86 2.86 2.90 2.73 2.81 2,99 2,91 2,82 2.79 2.49 2.62 2.59 2.81 2.68 2.55 2.76 2.89

7.61 10.22 7.88 9.46 10.83 11.35 11.29 10.88 11.17 11.13 10.82 11.32 11.47 11.65 11.42 10.48 10.70 10.81 10,88 10.22 10.53 9.81 9.51 6.62 7.35 7.75 7.76 7.98 8.34 7.91 6.17

0.05 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.05 0.00 0.01 0.01 0.00 0,01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.05 0.03 0.01 0.01 0.00 O.OI 0.05 0.02

0.01 0.00 0.01 0.00 0.02 0.00 0.01 0.01 0.03 0.02 0.00 0.00 0.02 0.00 0,01 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0,00 0.01 0.03 0.02 0.00 0.00 0.00 0.00 0.00

0,000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0.000 0,000 0,000 0,000 0.000 0.000 0.000 0,000 0,000 0.000 0.000 0.000 0.000 0.000 0.000

Cr

Co

Ni

Cu

Zn

Sum 93.77 92.80 93.72 94.07 92.92 94.83 93.76 94.98 94.61 94.35

1 0.09 0.21 0.17 0.20 0.27 0.30 0.29 0.27 0.27 0.25 0.27 0.26 0.24 0.20 0.25 0.28 0.23 0.28 0.27 0.27 0,27 0.23 0.23 0.12 0.12 0.10 0.10 0.12 0.15 0.18 0.07

98.19 95.41 95.39 96.26 95.52 95.12 94.95 94.28 93.44 94.60 95.51 95.62 94.55 94.80 94.80 95.22 94.71 94.33 94.63 94.03 95.57 95.46 95.92 97.04 94.91 95.52 95.76 95.88 94.87 96.17 95.57

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

Mineral Comments bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 near in bio2 core bio2 core bio2 core bio2 core bio2 core bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in

Na 0.11 0.14 0.14 0.13 0.10 0.12 0.16 0.16 0.15 0.11 0.15 0.10 0.13 0.13 0,13 0.12 0.10 0.16 0.14 0.19 0.16 0.15 0.16 0.14 0.11 0.12 0.17 0.18 0.17 0.12 0.14 0.09 0.12 0.18 0.15 0.10 0.14 0.14 0.10 0,08 0.06 0,10

CI Mg 0,329 11.15 0,328 11.06 0,319 10.40 0,323 11.22 0,303 10.21 0.325 10.02 0.353 9.73 0.314 9.59 0.364 8.85 0.379 8.79 0.368 8.71 0.349 8.76 0.439 8.77 0.366 8.97 0.341 9.10 0.375 8,83 0.390 8,73 0.376 8.83 0.347 8.77 0.358 8.92 0.369 8.76 0.347 9.02 0.402 9.10 0.357 8.91 0.347 8.81 0.391 9.12 0.356 8.97 0.360 8.91 0.394 9.01 0.443 8.94 0.372 8.96 0.415 8.99 0.416 9.00 0.347 ri.99 0.362 8.72 0.341 8.84 0.382 8.83 0.372 8.84 0.376 8.89 0.350 9.74 0.448 9.54 0.376 8.91

Al 6.76 6.74 6.57 6.88 6.53 6.40 6.68 6.60 7.09 7,14 7,20 7,14 7,17 7,19 7,26 7,20 7.19 7.26 7.14 7.31 7.15 7.26 7.28 7.28 7.20 7.24 7.19 7.25 7.26 7.15 7.20 7.24 7.26 7.37 7.19 7.19 7.11 7.20 7.32 7.08 7.09 7.17

Si 18.85 18.87 18.61 19.01 18.95 18.82 18.29 18.45 17.88 17.50 17.47 17.52 17.74 17.60 17.61 17.48 17.52 17.49 17.46 17.34 17.57 17.66 17.66 18.02 17.59 17.86 17.70 17.56 17.59 17.50 17.63 17.71 17.63 17.63 17.39 17.46 17.31 17.61 17.67 18.37 18,06 17,67

K 8,01 7.98 7.87 8.10 7.71 7.64 7.69 7.71 7.84 7.88 7.68 7.88 8.00 7.85 7.87 7.81 7.90 7.72 7.65 7.60 7.71 7.83 7.77 7.83 7.80 7.87 7.80 7.79 7.78 7,88 7,95 7,92 7,80 7,72 7.72 7.79 7.88 7.68 7.68 7.72 7.74 7.76

Ti 2.72 2.85 2.74 2.73 2.65 2.69 2.88 2,62 2,89 2,78 2,81 2,98 2,92 2,83 2.88 2.89 2.90 2.74 2.60 2.69 2.62 2.62 2.64 2.76 2.68 2.71 2.52 2,36 2,53 2.59 2.74 2.70 2.90 2.72 2.77 2.82 2.85 2.92 2.64 2.80 3.20 2.80

Fe 7.58 7.78 8.18 7.13 9.30 9.33 10.08 10.14 11.60 11.38 11.62 11.30 11,25 11,09 10.51 11.07 11,27 11,40 11,34 11,52 11,42 11,31 11,32 11,03 11,32 10,95 11,44 11,56 11,65 11,15 10,94 10,89 10.82 11.52 11.08 11.31 11.24 11.51 10.99 10.45 10.11 10.50

Ca Mn 0.02 0.10 0.01 0.14 0.00 0.14 0.00 0.10 0.00 0.23 0.00 0.26 0.02 0.19 0.00 0.25 0.01 0.22 0.01 0.23 0.01 0.23 0.00 0.19 0.00 0.25 0.00 0.23 0.00 0.22 0.01 0.23 0.00 0.23 0.02 0.24 0.01 0.33 0.03 0.25 0.00 0,26 0.00 0,25 0.01 0,22 0.01 0,22 0.00 0,23 0.01 0.24 0.00 0.29 0.01 0.26 0.00 0.23 0.00 0.24 0.00 0.20 0,00 0.24 0.01 0.26 0.00 0.33 0.00 0.24 0.01 0.22 0.00 0.25 0.04 0.27 0.01 0.29 0.00 0.25 0.03 0.14 0.01 0.21

P 0.02 0.00 0.00 0.01 0.01 0.01 0.00 0,00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.03 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0,00 0,00 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.00

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.000 0.000 0.438 0.189 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cr

Co

Nl

Cu

Zn

Sum 96.10 96.45 94.65 96.31 96.17 95.43 95.70 95.31 96.28 95.04 95,11 95,15 95,87 95,31 95.01 94.90 95.18 95.17 94.45 95.04 94.84 95.63 95.83 96.04 95.25 96.01 95.52 95.12 95.70 94.74 95.13 95.29 95.32 96.16 94.22 94.96 94.64 95.76 95.01 96.95 96.21 94.36

pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

Mineral Comments bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 n bio2 near core bio2 core bio2 core bio2 core bio2 core bio2 core bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 in bio2 near rim



Na 0.14 0.11 0.13 0.16 0.14 0.16 0.13 0.16 0.16 0.15 0.18 0.12 0.10 0.11 0.11 0.12 0.14 0.13 0.15 0.13 0.09 0.17 0.20 0.12 0.11 0.12 0.14 0.17 0,13 0.14 O.Il 0.10 0.14 0.18 0.21 0.20 0.18 0.12 0.20 0.15 0.14 0.14

CI 0.355 0.476 0349 0.287 0.368 0.351 0353 0.323 0.359 0.343 0.339 0.367 0351 0.372 0.360 0.349 0.386 0.338 0.356 0.346 0,363 0.401 0,357 0.372 0.394 0,388 0,334 0.377 0.356 0.359 0.354 0.395 0.329 0.348 0.354 0.000 0.363 0.352 0.348 0.381 0.378 0.356

Mg 8.90 9.29 9.71 8.51 8.83 8.76 8.59 8.95 8.94 8.74 8.59 8.76 0.77 8.90 9.18 9.13 9.08 9.52 9.17 9.38 9.20 9.07 8.89 8.97 9.03 9.16 9.11 9.06 8.86 8.64 8.71 9.03 8.60 8.47 8.90 8.77 8.97 8.88 8.93 9.30 8.98 8.78

Al 7.18 7.11 6.60 7.16 7.05 7.18 7.01 7.38 7.26 7.17 7.10 7.24 6.85 7.25 7.10 7.16 7.27 7.19 7.21 7.20 7.38 7.26 7.20 7.21 7.22 7.28 7.41 7.31 7.28 7.11 7.22 7.28 7.07 7.93 7.23 7.19 7.36 7.25 7.33 7.50 7.21 7.17

Si 17.35 17.8^ 18.39 17.44 17.43 17.39 18.14 18.12 17,78 17.50 17.22 17.59 17.15 17.91 17.78 17.52 17.59 17.63 17.55 17.65 17.61 17.23 17.54 17.54 17.56 17.50 17,97 17,68 17.69 17.36 17.53 17.55 17.41 17.57 17.31 17.10 17.48 17.40 17.34 17.97 17.83 17.50

-

-

K Ti Fe 2,88 11,16 7.80 7.70 ' 3.00 10,02 " 7.58 2.84 " 9,84 6.41 2.19 8,81 7.71 2.86 10,96 7.69 2.74 11,27 7.49 2.72 11.47 7.64 2.80 11.41 7.74 2.86 11.30 2.74 11.45 7.82 2.69 11.26 7.68 7.74 2.73 11.42 2.74 10.79 7.80 7.67 2.76 11.30 7.89 2.65 10.45 7.81 2.74 10.75 7,90 2.77 11.05 7,87 2.59 10.19 7,91 2.59 10.83 2.57 10.34 7,85 7,68 2.55 10.69 231 11.23 7.59 7.67 2.36 11.47 2.70 10.96 7.78 7.85 2.55 10.80 7.92 2.67 10.47 2.52 11.14 7.73 7.69 2.55 11.34 2.77 11.36 7.68 2,78 11.54 7.62 7.59 2.59 11.41 7.82 2.56 11.13 2.54 11.50 7.59 6.94 2.18 10.70 2.34 11.46 7.61 2.27 11.35 7.67 7.75 2.11 11.76 2.20 11.33 7.93 7.64 2.28 11.67 2.43 11.57 7.65 7.70 2.53 11.54 2.77 11.31 7.67

Ca 0.01 0.03

o.oT 0.35 0.01 0.03 0.10 0.03 0.01 0.00 0.04 0.01 0.00 0.02 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.05 0.02 0.02 0,01 0,01 0,05 0.02 0.01 0.01 0.04 0.02 0.06 0.18 0.01 0.03 0.01 0.01 0.01 0.00 0.01 0.02

Mn 0.23 0.21 0.22 0.16 0.21 0.27 0.23 0.24 0.25 0.24 0.30 0.21 0.22 0.21 0.18 0.17 0.22 0.18 0.28 0.19 0.19 0.23 0.27 0.22 0.23 0.28 0.22 0.34 0.23 0.22 0.26 0,26 0,25 0,24 0,26 0,27 0.27 0.24 0.23 0.26 0.28 0,25

P

o,or 0,01 0.01 0.08 0.01 0.02 0,02 0.01 0.00 0.01 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.01 0.02 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.03 0.00 0.02 0.02 0.00 0.01 0.02 0.00 0.00 0.04

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cr

Co

Ni

Cu

Zn

Sum 94776 94.97 95.19 88.98 94.18 94.52 95.56 96.95 96.02 94.98 93.72 95.17 79.48 95.90 94.69 94.60 95.56 94.74 95.07 94.69 94.83 93.98 94.72 94.76 94.55 94.68 96.21 95.74 95.52 94.32 94.57 95.10 93.94 93,44 94,21 93,02 95,07 94,22 94.65 97.03 95.84 94.85

o^

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCIVI-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

Minera: Comments bio2 near rim bio2 rim bio2 near rim bio2 near rim bio2 rim bio3 rim bio3 near rim bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in bio3 in

Na 0.13 0.12 0.15 0.15 0.15 0.07 0.09 0.14 0.14 0.18 0.14 0.17 0.19 0.16 0.16 0.14 0.12 0.08

CI Mg 0.371 8,79 0.354 8,82 0.335 8,66 0.349 8,81 0.356 8,84 0.346 10,43 0.390 10,41 0.384 9,47 0.358 9,03 0.390 8,91 0.339 8,68 0.347 8,70 0.348 8,28 0.331 8,54 0.337 8,42 0.330 8,70 0.380 8,43 0,350 7,45

A1 7.18 7.28 7.11 7.20 7.20 7.02 7.14 7.19 7.15 7.24 7.18 7.21 7.14 7.15 7.16 7,14 7,09 6,77

Si 17,44 17.59 17.34 17.51 17.53 18.96 18.62 17.93 17.49 17.52 17.57 17.68 17.42 17.51 17.56 17.71 17.30 17.23

K 7,71 7.74 7,7^ 7,84 7,66 7,79 7,74 7,59 7,49 7,44 7,51 7,59 7,37 7,56 7,48 7.61 7.61 7.61

Ti 2,53 2.66 2.76 2.67 2.59 3.08 3.07 3.13 3.22 3.14 3.24 3.04 3.26 3.24 3.20 3.28 3.21 3.77

Fe 11.41 11.18 11.531 11.34 11.42 7.02 7.55 8.92 9.85 10.27 10,43 11,13 10,90 11,19 11.11 10,72 10.67 10.97

Ca 0,01 0.07 0,00 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0,00 0,00 0,00 0,02

Mil P 0,22 [_0,01| 0,24 0,03 0.28 0,0 f 0,22 0,00 0,33 0,03 0,16 0,00 0,14 0,00 0,21 0,00 0,29 0,00 0,29 0,00 0,27 0,00 0,26 0.02 0,29 0,00 0,28 0,01 0,30 0,00 0,30 0,01 0,26 0,01 0,32 0,02

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,000

SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla

bio I biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol biol

0.17 0.18 0.15 0.15 0.19 0.16 0.13 0.18 0.12 0.16 0.13 0.18 0.17 0.12 0.16 0.13 0,16 0.18 0.15 0.16 0.16 0.19 0.14

0.300 0,227 0,269 0,228 0,231 0,248 0,289 0,208 0,255 0,245 0,219 0,246 0,261 0,246 0,254 0,225 0,239 0,228 0,242 0,234 0,269 0,260 0,287

6,86 7,02 6,97 7,00 7,04 7,04 7,09 7,03 7,02 7,11 7,12 7,16 7,13 7,13 7.01 7.06 7,07 7,15 7,07 7,10 7,08 7,10 6,96

18,18 17,22 17,02 17,12 17,21 17,23 17,29 17,24 17,29 17,22 17,60 17,21 17,27 17,21 17,39 17,28 17.31 17,16 17,10 17,08 17,23 17,54 17,17

6,47 7.49 7,69 7,79 7,85 7,86 7,85 7,99 7,84 7,94 7,05 7,88 7,93 7,80 7,81 7,95 7,91 7,73 7,80 7,85 7,68 7,47 7,96

2.03 2.95 2.99 2.75 2.82 2.70 2.71 2.78 2.93 2.83 2.94 2.84 2.84 2.89 2.67 2.82 2.83 2.87 2.68 2.91 2.79 2.57 2.78

8.78 11.12 11.41 11,45 11,70 11,52 11,37 11,62 11,51 11,71 10,57 11,84 11,50 11,76 11,11 11,43 11,46 11,73 11,33 11,68 11,21 10,77 11,37

0,20 0,07 0,01 0,05 0,00 0,00 0,01 0,00 0,0^ 0,00 0,05 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,04 0,01

0,18 0,25 0,26 0,21 0,24 0,25 0,28 0,27 0,24 0,24 0,23 0,22 0,27 0,27 0,24 0,25 0,24 0,26 0,29 0,32 0,24 0,19 0,25

0,02 0,01 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01 0,00 0,00 0,00 0,00 0,00 0,01 0.00

0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0.000 0.000

rim near rim in in in in in in in in in loZ band core core in m in in in in near rim rim rim near rim

9.30 8,61 8,60 8,67 8,72 8,78 8,80 8,71 8,61 8,81 8.83 8.75 8.66 8.75 8.89 8.78 8.76 8.60 8.76 8.87 8.97 9.08 8.90

Cr

Co

Ni

Cu

Zn

Sum 94.44 95.06 94.55 94.96 95.01 95.23 95.35 94.22 93.81 94,28 94,22 95.28 93.72 94.91 94.56 95.08 93,44 92,42 90,76 93,47 93,52 93,67 94,55 94,23 94,35 94,58 94,38 94,95 93,44 95,03 94,62 94,86 94,08 94,55 94,60 94,45 93,66 94,78 94,17 93,92 94,26

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla

Mineral biol biol biol biol biol biol biol biol biol biol biol biol biol bio2 bio2 bio2 bio2

Comments near rim in loZ band in in core core near core in in in near rim rim loZ?bnd rim rim near rim in in

SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a

biol rim biol near rim biol near rim biol in biol core biol in I bio repl act nr b bio rim near biol bio in near biol bio in near biol bio3 in near biol bio3 in near biol bio3 in near biol bio4 bio4 rim bio4 in | bio4 core bio4 in bio4 in bio4 in bio4?chl bio4?chl bio4?chl bio4?chl

1

1

Na 0.14 0.14 0.17 0.15 0.14 0.16 0.14 0.14 0.18 0.15 0,23 0.14 0.09 0.24 0.18 0.19 0.18

C! Mg 0.251 8.73 0.260 0.235 8.68 0.227 8.76 0,245 8.58 0.234 8.60 0.230 8.61 0.267 8.64 0.268 8,63 0.271 8.62 0.244 8.63 0.286 8.48 0.289 9.19 0.193 5,88 0.228 9,57 0.248 10,30 0.256 10,16

A) 7,00 6.75 6.96 7.11 7.02 7.05 7.05 6.99 7.07 7.08 7.06 7.56 6.75 7.13 6.75 6.39 6.40

Si 16,99 17,76 17.05 17.20 17.02 17,02 17,13 17,11 17.11 16.97 17.08 18.27 18.27 21.15 17.53 18.25 18.28

K 7.74 7.66 7.69 7.84 7.77 7.79 7.80 7.81 7.71 7.71 7.55 6.79 8.05 9.00 7.88 7.48 7.43

Ti 2,84 2,73 2,92 2.85 2.89 2.97 2.86 2.96 2.91 2.99 2.74 2.50 2.75 1.40 2.48 2.35 2.35

Fe 11.53 10.73 " 11.50 11,16 12,04 11,64 11.76 11.86 11.42 11.54 11.76 8.95 10.30 6.33 10.24 9.24 9.06

Ca Mn 0,00 0.27 0.03 0.22 0.02 0.20 0.00 0.26 0.02 0.28 0,00 0.22 0,00 0.25 0,00 0.26 0,03 0.23 0.00 0.27 0.07 0.25 0.13 0,22 0,01 0,17 0,04 0,12 0,06 0,23 0,13 0,18 0,12 0.22

P 0.00 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

F 0,000 0000 0,000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000 0,000 0,000 0.000

0.22 0.24 0.25 0.31 0.34 0.34 0.20 0.15 0.14 0.14 0.10 0.09 0.22 0.14 0.11 0.12 0.11 0.12 0.15 0.17 0.17 0.12 1.80 2.85

0.276 0.321 0,315 0,286 0.308 0.308 0.258 0.300 0.282 0.311 0.295 0.315 0.216 0.317 0.310 0.299 0.282 0.307 0.316 0.274 0,292 0,297 0,056 0,000

6.63 6.82 6.52 6.75 6,84 6.80 5.76 6.61 6.55 6.93 6.91 6.94 5.45 6.33 6..53 6.42 6.58 6.40 6.17 6.43 6.13 6,27 5,90 5,98

19.62 16.88 16.53 16.98 17.10 17,15 19,46 17,86 18,06 17.20 17.59 17.33 17.06 18.12 17.98 18.11 18.35 18,31 18.63 19,03 18.65 18.71 19.48 20.49

7.69 7.57 7.24 7,48 7,40 7.32 6.08 7.61 7.35 7.60 7.26 7.56 4.02 7.66 7.89 7.85 7.80 7.66 7,65 7.67 7.66 7,53 1,15 0,13

2.37 2.99 3.05 2.97 2,89 2.96 2.27 2.79 2.70 2.92 3.13 2.84 4.56 2.53 2.66 2.58 2,45 2.20 2,00 2,02 2,06 2,04 0.24 0.04

10.22 11.94 11.57 11.58 11.90 11.64 10.20 10.49 10.34 11.17 10.32 10.59 8.69 10.36 10.41 10.31 10.45 10.36 10.08 10,21 9,74 9,66 12,01 11,44

0,04 0,05 0,08 0,09 0.07 0,12 1.54 0.08 0.12 0,09 0.35 0.07 3.92 0.05 0.00 0.01 0.00 0.03 0.03 0.03 0.02 0.02 0.60 1.58

0.00 0,00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0,00

0,000 0,000 0,000 0,000 0,000 0.000

9.36

7,48 8,50 8.22 8.45 8.70 8.62 9.05 9.59 9.19 8.78 9.27 9.14 6.35 9.51 9.49 10.01 9.99 10.25 10.29 10,36 10.46 10.75 8,74 9,23

0.07 0,07 0,10 0.05 0.06 0.10 0.07 0.10 0.08 0.08 0.06 0.07 0.06 0.06 0,05 0,06 0,05 0.06 0,05 0,06 0,05 0,04 0.09 0.12

o.ooo 0.000 0.000 0,000 0,000 0,000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,231 0,000

Cr

Co

Ni

Cu

Zn

Sum

r93,70 94,56 93,62 94.08 94,34 93.97 94.27 94.46 93.91 93.85 93.91 92,16 95,19 90,46 93.72 93,88 93,45 93,94 93,30 90,85 92,82 93,90 93,54 94.44 94.62 93.60 93,53 94,23 93.38 86.98 93.85 94.33 94.99 95.63 95.01 94,66 96,35 94,56 95.10 88.09 91.58

00

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a

Mineral Comments bio5 rim to chl bio5 in bio5 core bioS in | bio6 near rim bio6 rim bio6 in near rim bio6 in | bio6 core bio6 core bio6 in | bio6 near rim bio6 rim bio7 rim bio7 in bio7 in bio7 core bio7 near core bio7 in bio7 in bio7 near rim bio7 rim bio8 core bio8 in bio8 in bio8 near rimlilm bio8 rim to ilm bio8 rim to ilm

SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6

bio lb, rim biolb, in bio lb, in biolb, near core biolb, core biolb, core biolb, in biolb, near rim biolb, rim biolc, rim biolc, near rim biolc, loZ band in biolc, in

Na 0.11 0.09 0.10 0.10 0.17 0.16 0.14 0.16 0.15 0.17 0.16 0.15 0.21 0.10 0.14 0.14 0.14 0.14 0.13 0.12 0.11 0.10 0.13 0.14 0.16 0.17 0.14 0.23

CI Mg 0.294 9.61 0.299 8.37 0.320 8.50 0.299 8.84 0.310 8.65 0.332 8.07 0.320 8.88 0.282 8.87 0.314 8.78 0.307 8.90 0.316 8.81 0.296 9.09 0.284 9.02 0.281 8.93 0.274 9.02 0.290 9.00 0.328 9.01 0.280 8.98 0.303 8.82 0.276 8.89 0.294 9.83 0.293 10.16 0.360 9.07 0.306 9.11 0.314 9.43 0.308 9.61 0.303 9.67 0.292 9.74

A1 6.51 6.93 6.93 6.75 6.54 6.57 6.92 6.90 6.92 6.82 6.79 6.71 6.62 6.93 6.88 6.89 6.95 6.83 6.81 6.96 6.52 6.50 6.81 6.80 6.87 6.66 6.88 6.73

Si 18.37 17.27 17.09 17.86 17.06 17.05 17.45 17.13 17.03 17.23 17.18 17.59 18.24 17.25 17.05 17.37 17.27 17.16 17.24 17.32 17.93 18.13 17.18 17.47 17.27 17.50 17.45 17.35

K 7.46 7.63 7.75 7.55 7.49 7.28 7.61 7.73 7.63 7.67 7.75 7.71 7.40 7.79 7.76 7.73 7.83 7.80 7.84 7.87 7.83 7.92 7.64 7.74 7.74 7.78 7.77 7.46

Ti 2.21 2.71 2.84 2.59 2.65 2.69 2.71 2.96 3.13 3.11 3.02 2.77 2.60 3.09 2.97 2.98 2.91 3.02 2.97 2.91 2.51 2.20 2.93 2.84 2.75 2.43 2.53 2.57

Fe 11.03 12.16 12.03 11.62 11.27 11.47 11.45 11.35 11.41 11.39 11.08 10.82 10.77 10.76 11.10 10.99 11.18 11.06 11.48 11.33 10.19 10.11 11.11 11.26 11.15 10.79 10.57 10.62

Ca 0.34 0.10 0.07 0.13 0.01 0.28 0.02 0.01 0.00 0.01 0.01 0.03 0.08 0.05 0.03 0.01 0.00 0.01 0.01 0.00 0.02 0.01 0.04 0.04 0.03 0.06 0.03 0.09

Mn 0.03 0.05 0.07 0.07 0.06 0.05 0.09 0.10 0.07 0.08 0.10 0.07 0,08 0.09 0.08 0.05 0.08 0.06 0.08 0.09 0.06 0.05 0.10 0.07 0.06 0.07 0.09 0.10

P 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.01 0.02 0.01 0.00 0.01

0.11 0.09 0.11 0.14 0.13 0.13 0.11 0.08 0.10 0.08 0.11 0.09 0.08

0.411 0.362 0.362 0.326 0.370 0.375 0.432 0.394 0.458 0.407 0.407 0.422 0.400

6.24 6.39 6.76 6.87 6.83 6.89 6.79 6.89 7.06 6.80 6.72 6.49 6.85

18.31 18.48 18.11 18.19 18.29 18.02 18.07 17.74 17.72 17.94 17.85 18.45 17.89

7.14 7.36 7.59 7.57 7.75 7.76 7.56 7.50 7.28 7.83 7.72 7.74 7.79

2.87 2.70 3.06 3.26 3.32 3.20 3.25 3.32 3.24 2.87 3.05 2.84 3.15

8.68 8.22 8.19 7.47 7.66 7.56 8.27 8.66 9.80 8.94 8.91 8.02 8.90

0.05 0.05 0.02 0.03 0.01 0.00 0.02 0.01 0.03 0.02 0.02 0.01 0.00

0.10 0.13 0.06 0.07 0.06 0.04 0.08 0.09 0.11 0.12 0.10 0.07 0.04

0.01 0.00 0.00 0.01

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00

0.384 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

92.76 93.72 93.67 94.63 95.16 94.34 94.57 93.56 94.50 94.25 94.02 94.73 94.82

o.oo

Or

Co

Ni

Cu

Zn

Sum 95.28 93.82 93.87 94.62 91.68 91.21 94.11 93.82 93.70 94.17 93.41 93.76 94.30 93.78 93.55 94.06 94.22 93.69 94.08 94.37 94.21 94.56 93.71 94.44 94.42 93.90 94.12 93.74

F

o.obo

1 9.86 10.57 10.15 10.82 10.74 10.76 10.41 9.87 9.50 10.07 10.06 10.90 10.27

pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6 SMCM-6

Mineral Comments biolc, core bio 1 c, core biolc, in biolc, near rim biolc, rim biolc, rim biolc, near rim biolc, near rim biolc,in biolc,in biolc, core bio It, core bio It, core bio It, in bio It, in bio It, in bio It, in bio It, in bio It, near rira biolt, rim bio relic in chl,c bio relic in chl,i bio relic in chl,r

Na 0.09 0.09 0.08 0.06 0.10 0.11 0.11 0.14 0.16 0.16 0.15 0.18 0.15 0.16 0.19 0.13 0.14 0.16 0.09 0.11 0.11 0.11 0.15

CI 0.438 0.420 0.388 0.435 0.518 0.414 0.382 0.324 0.263 0.221 0.248 0.229 0.251 0.348 0.333 0.396 0.365 0.411 0.404 0.347 0.287 0.358 0.398

Mg 11.32 10.17 10.50 10.41 10.06 8.65 9.93 10.57 10.55 10.50 10.63 10.64 10.58 10.46 10.48 10.26 10.04 9.91 9.35 8.93 9.62 9.56 9.46

Al 6.46 6.90jr 6.80 6.84 6.92 6.79 6.75 6.86 7.02 6.83 6.74 6.83 6.79 6.82 6.87 6.84 6.81 6.92 6.80 6.96 6.81 6.85 6.74

Si 18.87 17.77 18.04 17.94 18.04 18.74 17.91 18.16 17.92 17.98 17.96 18.12 18.07 18.15 17.96 17.69 17.67 17.72 17.36 18.81 17.87 17.79 17.70

K 7.86 7.62 7.82 7.88 7.54 7.37 7.59 7.48 7.60 7.63 7.63 7.67 7.73 7.74 7.64 7.83 7.67 7.68 7.63 6.91 7.67 7.66 7.58

Ti Fe 2.79 7.16 3.IT 8.88 3.32 7.91 3.21 8.26 2.87 9.63 2.25 8.47 3.07 8.27 3.20 7.78 3.10 8.03 3.03 7.94 3.26 7.75 3.22 7.87 3.31 8.09 3.11 8.17 3.07 8.10 3.07 8.23 3.35 8.28 3.13 8.76 3.47 8.92 3.08 8.63 3.12 9.63 3.16 10.14 3.05 10.17

Ca Mn 0.00 0.08 0.01 0.11 0.02 0.09 0.00 0.05 0.04 0.11 0.05 0.14 0.02 0.08 0.05 0.12 0.03 0.10 0.01 0.05 0.01 0.05 0.00 0.10 0.01 0.10 0.02 0.06 0.00 0.07 0.01 0.08 0.03 0.05 0.01 0.09 0.03 0.08 0.34 0.11 0.03 0.21 0.02 0.13 0.08 0.19

P 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

1 biol rim biol near rim biol in biol in biol in biol in biol in biol in biol in biol near core biol core biol core biol core biol in biol in biol in biol in biol in

0.04 0.08 0.14 0.13 0.16 0.18 0.18 0.21 0.19 0.17 0.18 0.17 0.16 0.19 0.16 0.14 0.15 0.15

0.398 0.383 0.416 0.434 0.347 0.352 0.361 0.363 0.344 0.362 0.377 0.342 0.357 0.329 0.319 0.374 0.374 0.315

9.13 9.40 8.93 8.77 8.86 9.10 8.97 9.05 9.04 9,13 8.99 9.05 8.97 9.11 9.20 9.00 8.81 8.99

6.13 6.87 6.92 6.87 6.92 7.02 7.03 6.94 6.93 7.02 6.86 6.95 6.95 6.83 6.96 6.88 7.03 6.89

20.83 17.85 17.64 17.43 17.60 17.56 17.56 17.61 17.44 17.61 17.60 17.69 17.46 17.59 17.65 17.72 17.59 17.58

6.94 7.66 7.70 7.58 7.71 7.67 7.63 7.61 7.63 7.59 7.69 7.68 7.58 7.70 7.71 7.61 7.62 7.53

2.29 2.64 2.68 3.00 2.97 2.89 3.02 2.90 3.04 3.01 2.92 3.01 2.81 3.16 3.06 2.83 2.81 3.02

0.03 0.02 0.02 0.02 0.01 0.00 0.02 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.02 0.00

0.02 0.02 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.0! 0.00 0.00 0.00 0.01 0.00

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9.19 10.21 10.78 11.19 10.69 10.88 10.80 10.62 10.41 10.97 10.57 10.88 10.77 10.62 10.97 10.64 11.06 10.80

0.19 0.28 0.24 0.27 0.24 0.28 0.25 0.22 0.26 0.25 0.23 0.22 0.28 0.21 0.25 0.26 0.21 0.25

Cr

Co

Ni

Cu

Zn

Sum 95.27 94.34 94.53 94.53 95.33 91.52 93.03 94.37 94.30 93.76 93.86 94.60 94.82 94.65 94.14 93.53 93.38 93.84 92.53 93.81 94.59 95.04 94.46 95.96 94.35 94.07 94.25 94.21 94.87 94.74 94.29 93.93 95.16 94.09 95.03 93.92 94.63 95.46 94.24 94.43 94.30

Ux O

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Comments Mineral biol in biol near rim biol rim bioltoapincl, b rm bio2, rim bio2, near rim biol, in bio2,in bio2,in bio2, in bio2, near core bio2, core bio2, core bio2, near core bio2,in bio2, in bio2, in bio2, near rim bio2, rim biol rim biol near rim biol in biol in biol in biol in. loZ band biol in 1 biol core biol core biol core, loZband biol near core biol in biol in biol in biol loZ band nrim biol near rim biol rim biol outermost rim bio2 hiZ outer rim bio2 loZ fringe bio2 midZ fringe i bio2 hiZ in bio2 hiZ in

Na

CI

Mg

0.13 0.11 0.07 0.08 0.08 0.11 0.10 0.10 0.15 0.10 0.09 0.11 0.15 0.18 0.10 0.13 0.11 0.11 0.08 0.37 0.08 0.11 0.11 0.14 0.09 0.09

0.i58 9.04 0.345 9.18 0.344 10.08 0.336 9.18 0.463 9.28 0.455 9.45 0.491 8.87 0.448 8.39 0.488 8.88 0.668 9.03 0.463 9.01 0.477 9.27 0.401 9.12 0.395 8.99 0.434 9.63 0.448 9.04 0.428 9,07 0.471 8.95 0.462 10,17 0.115 1.76 0.513 9.79 0.485 8.73 0.436 8.76 0.460 8.77 0.509 9.26 0.464 8,90

0.12 0.14 0.11 0.17 0.11 0.13 0.11 0.22 0.11 0.13

8,66 8,53 9,22 8.65

0.404 0,423 0.511 0.416 0.417 0.460 0.435 0.466 0.494 0.468 0.07 0.498 0.50 0.059

0.05 0.435 0.04 0.406 0.07 0.374 0.09 0.433

8^83' 8.64 8.57 9.56 8.89' 8.92 9.53 0.92 9.77

9.57 8.86 8.79

A1

Si

6.97 6.88 6.65 6.66 6.96 7.00 6.92 6.78 6.94 6.92 7.13 7.06 7,07 7.08 6.66 0.62 7.05 6.96 6.42 8.32 6.40 6.87 6.93 6.88 6.64 6.78

17.71 17.69 18.77 17.75 17.30 17.86 17,40 16,98 17,43 17.58 17.58 17,51 17,42 17,52 17.95 16.52 17,54 17,44 18,19 24.90 18.53 17.60

7.04 6.69

6,84 6.70 6.91 6.65 6.84 5.83 6.90 6.76 6.62

K

Ti

Fe

Ca

Mn

17.46 18.12 17.49

7.70 7.70 7.67 7.59 7.82 7,74 7,85 7.72 7.68 7.83 7.81 7.90 7.81 7.55 7.76 7.66 7.81 7.86 7.35 10,43 7.26 7.62 7.53 7.60 7.63 7.57

2,81 2,87 2,60 2,80 2,50 2,66 2,84 3.27 2.86 2.92 2.88 2.74 2.84 2.97 2.51 2.64 2.82 2.82 2.22 0.33 2.26 2.94 2.90 2.83 2.51 2.77

10.88 0.01 0.25 10.62 0.01 0.25 9.66 0.01 0.21 10.04 0.14 0.23 10.79 0.06 0.13 10.72 0.08 0.12 10.86 0.07 0,21 11.28 0,06 0,13 1140 0,05 0,16 11.38 0,02 0.19 11.18 0.02 0.17 10.72 0,02 0.20 11.01 0,01 0.17 11.07 0.09 0.14 10.09 0.04 0.11 11.32 0.06 0.13 10.98 0.05 0,17 11.28 0.01 0.16 9.20 0,07 0.08 2.48 0,12 0.04 10.16 0.07 0.19 11.20 0.04 0.27 11.20 0.02 0.17 11.29 0,04 0.20 10.71 0,05 0.23 11.26 0,02 0,23

17.70 17.32 17.99 17.52 17.21 17.47 17.66 18.98 17.32 17.42

7.46 7.65 7,45 7.57 7.49 7.53 7.22 3.83 7.65 7.61

2.83 2.80 2.64 2.91 2.78 2.76 2.65 2.16 2.78 2.70

11.16 10.92 10.99 10.81 11,13 11.33 10.83 9.04 10.88 11.05

17.44

18.08 7.56 8,02 27,89 10.48 6.54 18,31 7.92 6.29 18.50 7.64 6.82 17.74 7.65 6.86 17.66 7,43

0,06 0,05 0,02 0,04 0.06 0.06 0.16 1.44 0.04 0.06 0.09 0,26

2.55 10.27 0.26 2.23 2.46 10,24 0.00 2.49 10.15 0,00 2.90 10.53 0.00 2.91 10.83 0.00

0,24 0.18 0.22 0,19 0,19 0,20 0,21 0,15 0,19 0,19

P

F

Cr

Co

Ni

Cu

Zn

Sum

0.00 0.00 0.01 0.01 0.00 0,00 0.00 0,01 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.01 0.00 0.01 0.00 0,00 0.02 0.00 0.00 0.00 0.00

o.ooa 0.000 0.000 0.000 o.ooo 0.000 0.000 0.000 0.000 0,000 0,000 0.000 0.000 0,000 0.000 0.000 0.000 0.000 0,000 0.000 0.000 0.000 0,000 0.000 0,000

94.79 94.53 96.11 93.38 93.75 95.42 94.06 93,08 94.69 95.51 95.34 94,87 94,81 94.91 94.13 80.50 94.87 94.74 92.96 89.02 94.46 94.52 93,98 94.14 94.68

0.01 0.00 0.01 0.00 0.00 0,00 0.01 0,01 0.01 0.01 0.01

0.000

94.01 94.46 92.60 95.09 93.22 93,32 93,40 92,96 90.21 93.54 93.60 94.32 93.44

0,13 0.00 0.03 0.00 0.18 0.00 0.20 0.00 0.25 0.00 0.20 0,00

0,000 0,000 0,000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0,071

0.000 0.000 0,000 0.000

95.15 94.38 93.82 93.77

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Mineral Comments bio2 hiZ in bio2 hiZ in bio2 hiZ in bio2 hiZ in bio2 hiZ in bio2 hiZ in bio2 hiZ core area bio2 hiZ core area bio2 hiZ core area bio2 hiZ core area bio2 hiZ core area bio2 near loZ ptch bio2 loZ ptch bio2 loZ ptch bio2 very loZ ptch bio2 loZ ptch bio2 hiZ in bio2 hiZ rim21oZpt bio2 loZptc rm2hiZ bio2 loZptc in bio2 loZptc core bio2 loZptc core bio2 loZptc rim

SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla

bid rim bio 1 near rim biol in biol in biol in biol in biol in biol near core biol core biol core biol core biol near core biol near core biol in biol in biol in biol in biol in

Na 0.12 0,12 0.13 0.11 0.11 0.13 0.12 0.13 0.14 0.17 0.11 0.10 0.07 0.06 0.20 0.06 0.08 0.09 0.08 0.07 0.10 0.10 0.10

CI Mg 0.451 8.64 0.452 8.63 0.390 8.56 0.423 8.45 0.449 8.49 0.407 8.56 0.398 8.54 0.396 8.52 0.396 8.52 0.380 8.53 0.408 8.62 0.429 8.55 0.427 9.26 0.433 9.84 0.051 11.66 0.420 9.14 0.502 8.76 0.475 8.73 0.446 9.30 0.330 9.56 0.410 9.30 0.426 9.28 0.431 8.77

Al 6.85 6.92 7.02 7.05 7.00 6.91 6.98 6.99 6.99 7.06 6.88 6.73 6.72 0.56 0.58 6.50 6.78 6.83 6.59 5.19 6.37 6.55 6.81

Si 17.55 17.42 17.28 17.34 17.33 17.18 17.39 17.34 17.49 17.33 17.49 17.72 18.01 18.20 25.95 18.34 17.69 17.56 18.21 20.61 18.31 18.34 17.57

K 7.46 7.51 7.56 7.56 7.45 7.54 7.48 7.53 7.53 7.67 7.48 7.46 7.55 7.38 0.19 7.33 7.45 7.41 7.44 5.39 7.27 7.28 7.53

Ti 3.17 3.09 2.95 3.15 3.01 2.96 3.06 3.10 3.07 3.14 2.96 2.86 2.96 2.74 0.21 3.03 3.02 2.86 2.79 2.05 2.85 2.68 2.79

Fe 11.14 11.06 11.24 11.21 11.17 11.18 11.21 11.32 11.32 11.29 11.11 11.23 10.58 9.89 5.89 10.02 10.69 10.94 10.23 8.88 9.99 10.32 10.87

Ca Mn 0.00 0.20 0.0(^ 0.30 0.00 0.30 0.00 0.25 0.00 0.29 0.00 0.26 0.01 0.32 0.00 0.28 0.00 0.31 0.00 0.25 0.00 0.27 0.00 0.27 0.00 0.23 0.12 0.19 8.27 0.59 0.00 0.20 0.01 0.20 0.04 0.23 0.12 0.26 2.11 0.24 0.09 0.22 0.07 0.23 0.03 0.19

P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.03 0.01 0.01 0.00 0.00 0.01 0.01

F 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.13 0.09 0.16 0.11 0.09 0.16 0.13 0.14 0.11 0.10 0.16 0.16 0.11 0.14 0.19 0.17 0.17 0.22

0.326 0.395 0.297 0.351 0.275 0.216 0.247 0.240 0.237 0.255 0.232 0.228 0.224 0.258 0.294 0.250 0.318 0.346

7.41 7.08 7.10 7.04 7.10 6.94 6.90 6.95 7.02 7.07 7.02 6.99 7.15 7.00 6.98 6.87 6.99 6.87

18.18 17.91 17.67 17.67 17.55 17.52 17.17 17.12 17.47 17.35 17.34 17.29 17.86 17.47 17.67 17.31 17.65 17.84

6.70 7.16 7.21 7.12 7.04 7.46 7.56 7.79 7.73 7.67 7.61 7.66 7.18 7.47 7.23 7.24 7.17 6.47

2.38 2.64 2.94 2.79 2.80 2.81 2.86 3.09 2.78 2.63 2.76 2.66 2.51 2.66 2.78 2.65 2.70 2.34

8.54 9.04 10.11 9.99 9.87 10.24 11.00 10.71 10.18 10.53 10.53 10.40 9.48 10.26 10.13 10.07 9.94 9.13

Oil 0.07 0.11 0.16 0.03 O.ll 0.09 0.02 0.01 0.03 0.07 0.05 0.05 0.04 0.13 0.16 0.11 0.15

0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.02

0.628 0.516 0.709 0.841 0.841 0.817 0.594 0.831 0.708 0.588 0.752 0.604 0.780 0.891 0.801 0.504 0.700 0.630

Or

Co

Ni

Cu

Zn

Sum 94.17 93.96 93.80 94.03 93.61 93.24 93.97 94.09 94.40 94.39 93.78 93.87 94.98 83.32 96.74 94.12 93.79 93.59 94.58 94.69 93.84 94.41 93.47

1 9.14 9.65 9.43 9.41 9.48 9.40 9.21 9.22 9.50 9.18 9.36 9.45 9.62 9.59 9.56 9.30 9.52 9.84

0.16 0.20 0.17 0.18 0.21 0.17 0.14 0.16 0.23 0.15 0.19 0.20 0.17 0.17 0.18 0.16 0.20 0.16

92.23 93.43 94.72 94.16 93.68 94.26 94.06 94.44 94.48 93.79 94.35 94.03 93.75 94.30 94.59 92.71 93.97 92.27

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla

Mineral Comments biol near rim biol rim biol rim biol rim bio2 big, rim bio2 big, nrim bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big,in bio2 big, core bio2 big, core bio2 big, core bio2 big, ncore bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, nrim bio2 big, nrim bio2 big, rim bio2 big, rim bio2 big, rim bio2 big, nrim bio2 big, in bio2 big,in bio2 big, in bio2 big, inloZ bio2 big, in bio2 big,in bio2 big, in

Na

o.i? 0.20 0.18 0.29 0.12 0.17 0.15 0.12 0.15 0.17 0.13 0.17 0.15 0.18 0.09 0.18 0.15 0.16 0.17 0.17 0.15 0.14 0.14 0.18 0.16 0.13 0.15 0.17 0.13 0.17 0.16 0.16 0.12 0.09 0.13 0.18 0.17 0.22 0.11 0.15 0.33 0.17

CI Mg 0.285 9.33 0.328 9.88 0.282 9.98 0.231 10.07 0.360 9.02 0.250 8.29 0.257 8.74 0.249 8.94 0.230 8.77 0.254 8.75 0.245 9.12 0.248 8.86 0.308 8.90 0.218 8.81 0.249 8.96 0.213 8.86 0.325 8.92 0.223 8.78 0.241 8.70 0.224 8.78 0.212 8.90 0.318 8.84 0.228 8.97 0.214 8.83 0.220 8.91 0.294 8.74 0.247 8.73 0.228 8.74 0.256 8.94 0.289 8.55 0.272 8.92 0.232 9.02 0.304 9.68 0.280 9.47 0.352 8.75 0.359 9.49 0.257 8.86 0.239 8.96 0.299 9.38 0.238 8.85 0.248 8.84 0.228 8.87

Al 6.63 6.91 6.92 6.99 7.07 6.78 6.97 6.97 6.95 6.96 7.05 6.95 6.93 7.01 7.05 7.03 6.85 7.08 6.98 7.03 6.97 7.00 7.02 6.99 7.06 7.06 7.06 7.01 6.99 7.35 7.04 7.04 7.01 6.74 7.02 6.69 6.93 6.91 6.76 6.95 6.93 7.14

Si 17.15 17.82 17.86 17.75 18.06 17.00 17.17 17.14 17.21 17.01 17.49 17.27 17.25 17.24 17.56 17.19 17.33 17.06 16.92 17.09 17.13 17.20 17.30 17.13 17.34 17.11 17.16 17.07 17.06 17.25 17.04 17.33 18.08 17.88 17.39 17.84 17.15 17.07 18.21 17.13 17.34 17.25

K 7.27 7.21 7.25 6.11 7.36 7.46 7.67 7.78 7.88 7.74 7.81 7.94 7.86 7.91 7.36 7.86 7.86 7.82 7.72 7.88 7.85 7.93 7.81 7.69 7.83 7.78^ 7.93 7.83 7.80 7.56 7.83 7.75 7.60 7.85 7.58 7.50 7.74 7.46 7.08 7.72 6.61 7.79

Ti 2.40 2.45 2.52 2.50 2.73 2.96 2.87 2.84 2.87 2.88 2.77 2.92 2.96 2.90 3.01 2.92 2.90 3.00 2.81 2.79 2.88 2.85 2.85 2.87 2.82 2.97 2.95 2.97 2.73 2.71 2.59 2.73 2.31 2.54 2.56 2.51 2.95 2.78 2.84 2.92 2.81 2.89

Fe 9.69 9.90 9.63 8.76 9.53 11.07 11.53 11.39 11.68 12.01 11.18 11.77 11.84 11.78 10.79 11.64 11.38 11.47 11.59 11.59 11.39 11.66 11.41 11.70 11.69 11.46 11.78 11.92 11.54 11.27 11.50 11.38 9.62 10.89 11.16 10.51 11.35 11.57 10.30 11.54 11.41 11.57

Ca Mn 0.08 0.24 0.18 0 17 0.14 0.18 0.24 0.18 0.08 0.23 0.07 0.24 0.02 0.24 0.00 0.29 0.00 0.26 0.00 0.28 0.03 0.20 0.00 0.22 0.00 0.23 0.00 0.24 0.03 0.20 0.00 0.22 0.00 0.22 0.00 0.27 0.00 0.32 0.00 0.26 0.01 0.28 0.01 0.23 0.00 0.25 0.02 0.22 0.00 0.26 0.00 0.21 0.00 0.21 0.00 0.24 0.00 0.29 0.01 0.29 0.00 0.22 0.01 0.25 0.04 0.22 0.00 0.26 0.04 0.22 0.04 0.26 0.00 0.29 0.09 0.29 0.04 0.18 0.00 0.26 0.08 0.25 0.01 0.25

P 0.00 0.02 0.00 0.02 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00

F 0.597 0.581 0.763 0.750 1.128 0.790 1.016 1.232 0.870 1.233 1.226 1.023 1.038 1.107 1.179 1.047 1.057 0.842 0.977 0.969 0.895 1.138 1.048 1.022 1.191 0.964 0.916 1.144 0.000 1.079 0.913 1.093 1.529 1.012 1.039 0.959 0.857 1.228 1.120 1.025 0.921 1.116

Cr

Co

Ni

Cu

Zn

Sum 91.14 94.45 94.49 92.30 94.15 92.36 94.58 94.85 95.03 95.11 95.65 95.67 95.71 95.63 94.83 95.37 95.12 94.86 94.09 94.77 94.76 95.40 95.27 94.93 95.79 94.78 95.35 95.41 94.07 94.55 94.39 95.23 94.99 95.65 94.11 94.75 94.63 94.63 95.12 94.80 93.77 95.59

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a

Mineral Comments bio2 big, in bio2 big, core bio2 big, core bio2 big, core bio2 big, in bio2 big, in bio2 big, in bio2 big, in bio2 big, nrim bio2 big, rim bio2 big, rim bio2 big, rim bio3 rim bio3 near rim bio3 in bio3 in bio3 in bio3 rim bio3 near rim bio3in I bio3 near core bio3 core bio3 core bio3 in bio3 in bio3 in bio3 in bio3 in bio3 rim bio3 rim 1 1 bid rim biol in 1 bio 1 near core biol core bio2 rim bio2 near rim bio2 in loZ band bio2 in bio2 in bio2 core bio2 core

Na 0.20 f 0.15, 0.16 0.16 0.18 0.18 0.13 0,17 0.28 0.13 0.09 0.09 0.20 0.13 0.16 0.15 0.12 0.20 0.15 0.13 0.14 0.14 0.13 0.13 0.16 f~ O R I R

MR

0.12 0.17 0.16 0.18

CI 0.227 0.248, 0.296 0.249 0.261 0.236 0.258 0.236 0.252 0.266 0.356 0.289 0.287 0.273 0.279 0.326 0.268 0.221 0.257 0.284 0.300 0.260 0.270 0.302 0.254 0.261 0.261 0.256 0.304 0.284

8.78 8.70 8.59 8.71 8.67 8.78 8.69 8.78 8.71 9.37 9.44 9.47 7.79 9.32 8.79 8.95 9.11 7.79 8.87 9.04 9.09 9.19 9.14 9.18 9.31 9.03 8.96 9.06 9.09 8.39

AI 7.14 6.97 6.95 6.90 7.00 7.01 7.01 7.04 7.02 6.93 6.56 6.47 7.35 6.80 6.96 6.97 6.95 6.49 7.31 6.93 6.85 6.89 6.83 6.84 6.85 6.91 6.96 6.89 6.96 7.73

Si 17.36 17.00 17.04 17.35 17.14 17.29 17.06 16.97 17.09 18.32 17.97 17.99 20.56 17.55 17.12 17.10 17.42 17.59 17.85 17.23 17.32 17.39 17.29 17.39 17.29 17.38 17.22 17.27 16.95 17.55

7.85 7.65, 7.70l 7.88 7.84 7.76 7,82 7.75 7.24 7.48 7.81 7.94 8.84 7.92 7.58 7.77 7.81 6.02 7.59 7.78 7.75 7.68 7.63 7.75 7.70 7.86 7.85 7.76 7.53 6.77

Ti 2.88 2.99 2.9? 2.77 2.92 3.01 2.89 2.83 2.89 2.85 2.77 2.66 2.21 2.83 3.01 2.93 2.67 1.97 2.76 2.95 2.84 2.81 2.96 2.79 3.10 2.87 2.97 3.05 2.87 2.68

0.22 0.23 0.33 0.32 1 .04 0.14 0.13 0.11 0.10 0.13 0.14

0.325 0.329 0.305 0.285 0.250 0.325 0.312 0.292 0.346 0.309 0.323

7.98 8.60 8.56 8.50 7.88 8.92 8.85 8.76 8.68 8.91 8.74

6.36 6.81 6.77 6.67 6.80 6.91 6.79 6.70 6.82 6.84 6.83

16.66 16.62 17.40 17.07 19.70 17.61 17.06 17.35 17.41 17.38 17.25

7.59 7.69 7.50 7.38 6.17 7.66 7.64 7.68 7.68 7.65 7.77

2.86 3.00 2.91 2.86 2.21 2.93 2.95 3.04 2.98 3.00 3.00

K

12.16 11.72 11.76 1 1 .62 11.84 11.69 11.81 11.84 9.50 10.35 10.11 8.94 10.90 11.34 11.29 10.95 10.85 11.35 11.31 10.90 11.21 10.87 10.92 10.59 10.96 11.09 10.95 10.77 9.90

Ca Mn 0.01 0.18 0.00 0.2^ 0.00 0.29 0.00 0.28 0.00 0.31 0.01 0.27 0.00 0.25 0.01 0.29 0.09 0.22 0.04 0,21 0.04 0.18 0.01 0.21 0.01 0.18 0.00 0.20 0.04 0.23 0.01 0,18 0.01 0.22 0.62 0.15 0.05 0.16 0.01 0.24 0.00 0.22 0.00 0.23 0.01 0.22 0.00 0.26 0.03 0.26 0.05 0.26 0.05 0.26 0.07 0.24 0.11 0.26 0.14 0.24

0,00 0,00 0,02 0,01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.01 0.02 0.02 0.00 0.00 0.02 0.00 0.01

F 1.050 1.194 1.161 1.107 1.163 1.124 1.084 0.868 1.035 1.091 0.880 1.215 1.017 1.260 1.050 0.987 1.020 0.898 0.864 1 .181 1.191 1.118 1.246 1.160 1.089 1.092 0.861 0.908 1.130 0.944

11.26 11.51 11.53 11.69 9.05 11.38 11.33 10.97 11.25 11.29 11.31

0.06 0.04 0.07 0.08 0.07 0.01 0.01 0.00 0.01 0.02 0.00

O.IO 0.09 0.08 0.10 0.04 0.04 0.09 0.06 0,09 0.10 0.07

0.00 0.01 0.00 0.00 0.01 0,01 0,01 0,00 0,01 0.01 0.00

0.407 0.569 0.616 0.335 0.585 0.462 0.493 0.558 0.665 0.587 0.439

Fe 1 1 .28

P

Or

Co

Ni

Cu

Zn

Sum 95.28 95.20 94.59 95.26 95.05 95.80 94.76 94,71 94,62 95,15 95.04 94.74 97.93 95.50 94.50 94.62 94.72 89.64 96.25 95.17 94.59 95.16 94.58 94.85 94.89 94.98 94.79 94.93 93.80 92.94 90.25 92.85 94.17 93.02 92.93 95.06 93.56 93.55 94.15 94.54 94.01

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a SMCA-5a

Mineral Comments bio2 near core bio2 in bio2 in bio2 near rim bio2 rim bio3 rim bio3 ii\ bio3 in 1 bio3 in | bio3 near core bio3 core bio4 rim bio4 in | bio4 in loZ, chl bio4 in bio4 in bio4 core bio4 core bio4 in bio4 in bio4 near rim bio4 rim bio5 loZ rim bio5 loZ nearrim bio5 in | bio5 hiZ in bio5 hiZ core

Na 0.12 0.13 0.13 0.14 0.12 0.12 0.11 0.08 0.11 0.12 0.13 0.13 0.16 0.57 0.57 0.14 0.16 0.18 0.22 0.15 0.14 0.07 0.70 0.22 0.16 0.13 0.26

CI 0.303 0.316 0.302 0.290 0.211 0.256 0.298 0.293 0.380 0.310 0.330 0.316 0.298 0.233 0.245 0.295 0.293 0.323 0.265 0.284 0.315 0.331 0.323 0.298 0.323 0.342 0.354

Mg 8.97j 8.67 8.76 8.88 6.60 8.73 9.41 8.76 8.63 8.77 9.05 8.70 8.58 8.95 8.57 8.58 8.90 8.70 8.65 8.86 8,90 8.53 7,80 9,67 9,11 9,07 8,61

Al 6.80 6.8^ 6.88 6.92 4.95 6.03 6.33 6.70 6.77 6.84 6.74 6.49 6.55 7,09 6.94 6.80 6,83 6.70 7,13 6.87 6.97 7.02 6.73 6.42 6.16 6.55 6.60

Si 17.33 17.17 17.32 17.03 16.52 17.69 18.07 17.35 16.96 17.47 17.44 16.39 16.59 18.63 17.87 17.33 17.13 16.96 17.69 17.26 17.08 17.48 18.44 18.03 17,58 17,47 17,44

K 7,74 7,81 7,72 7,68 5,19 7,72 7,79 7,79 7.75 7.80 7.75 7.25 7.62 5,74 5,65 7,70 7,69 7,69 7,09 7,71 7,71 4,82 7,13 7,50 7.61 7.64 7.36

Ti 3,03 3,19 3.14 2.89 8.09 3.02 2.80 2.91 3.06 3.11 2.77 2.50 2.72 2.05 2.25 3,07 3,09 2,99 2,87 3.16 3.13 3.27 2.13 2.41 2.43 2.49 2.50

Fe 11,23 11,22 11,45 11.36 7.93 10.64 10.58 11.25 11.56 11.67 11.37 12.92 12.01 11.55 11.22 11.54 11.78 11.60 11.48 11.76 11,49 12,09 11,86 10,71 10,70 11.24 11.65

Ca 0.01 0.01 0.01 0.00 6.56 0.03 0.00 0.00 0.03 0.01 0.02 0.06 0.04 0.14 0.08 0.01 0.00 0.01 0.04 0.00 0.02 0.02 0.22 0.09 0.05 0.04 0.10

Mn 0.12 0.11 0.09 0.12 0,07 0,15 0,09 0,11 0,11 0,10 0,06 0,06 0,12 0,08 0,06 0,08 0,12 0,14 0,07 0,08 0,08 0,11 0,06 0,07 0,06 0,04 0.06

P 0,00 0,01 0,01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.01 0.00 0.00 0.00 0.00 0,01 0.00 0,00 0,00 0,00 0.00 0,00 0,02 0.00 0.01

F 0.673 0.433 0.650 0.593 0.595 0.506 0.684 0.688 0.741 0.587 0.608 0.511 0.426 0.546 0.448 0.556 0.507 0.461 0.360 0.407 0.493 0.549 0.556 0.787 0.664 0.845 0.727

SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a

1 biol rim biol near rim biol in biol in biol in biol in bio 1 near core biol core biol core biol in biol in biol nrimtochl biol rim to chl bio2 rim

0.09 0.11 0.11 0.22 0.24 0.23 0.27 0.21 0.20 0.23 0.22 0.17 0.09 0.10

0.317 0,334 0.322 0.307 0.290 0.229 0.303 0.373 0.381 0.342 0.354 0.428 0.209 0.424

9.69 9.63 9.24 10.54 10.70 10.62 10.52 10.36 10.55 10.65 10.53 10.66 8.62 9.20

7.68 7.18 7.52 6.71 6.86 6.84 6.67 6.93 6.70 6.71 6.90 6.93 7.73 7.01

17,43 17,35 18.27 17.71 17.59 17.45 17.62 17.45 17.58 17.57 17,52 17,62 15,33 17,04

6.27 6,62 6,01 7,28 7,71 7,53 7,50 7,45 7,63 7,59 7,51 7,58 2,93 7,14

3.01 9.57 3.23 8.82 2,98 8.20 3,22 7.71 3,14 8.36 3.09 8.31 3.21 8.24 3,16 8.65 3,04 8.39 3,02 8.46 3,35 8.60 3,16 8.60 4,05 9.98 2,94 10.76

0.06 0.10 0.50 0.13 0.03 0.06 0.06 0.04 0.03 0.03 0.03 0,04 4,01 0,09

0.19 0.15 0.19 0.06 0.10 0.10 0.12 0.06 0.08 0,07 0,09 0,12 0,22 0,20

0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.02 0.01

0.373 0.600 0.243 1.283 1.439 1.243 1.450 0.814 1.037 0.996 1.022 0.974 0.728 0.292

Cr

Co

Ni

Cu

Zn

Sum 94.57 94.00 94.77 93.88 95.50 92.65 94.78 93.89 93.73 95.31 94.52 92.16 92.19 94.86 91.94 94.24 94.79 93.51 94.61 95,05 94,60 92,48 94,37 94,79 92,39 93.64 93.36 93.70 92.46 92.90 93.65 95,20 94,23 94.41 94.15 94.12 94.28 94,99 95,30 91,46 93,32

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a SMCM-6a

Mineral Comments bio2 rim bio2 in bio2 in bio2 in bio2 near core bio2 rim2hiZksp bio3 rim or chl b\o3 near rim bio3 in bio3 in bio3 in bio3 core bio3 core bio4 rim bio4 near rim bio4 in bio4 in bio4 in bio4 near core bio4 core

Na 0.10 0.07 0.12 0.14 0.13 0.02 0.10 0.19 0.22 0.23 0.21 0.21 0.22 0.09 0.10 0.09 0.11 0.11 0.10 0.10

CI 0.444 0.377 0.404 0.323 0.349 0.036 0.370 0.329 0.244 0.298 0.335 0.265 0.298 0.366 0.353 0.357 0.346 0.363 0.316 0.373

Mg 8.64 9.01 8.14^ 8.11 8.15 0.42 8.48 10.47 10.69 10.33 10.26 10.48 10.44 10.11 10.40 10.07 10.16 10.21 9.90 9.47

AI 7.04 6.74 6.55 6.59 6.83 5.30 6.98 6.55 6.73 6.87 6.78 6.97 6.87 6.72 6.70 6.71 6.57 6.67 6.78 6.88

Si 16.84 17.01 16.89 17.31 17.42 14.41 17.20 17.11 17.63 17.43 17.40 17.43 17.39 17.77 17.84 17.74 17.77 17.51 17.44 17.28

K 6.83 7.61 7.26 6.94 7.02 0.48 7.10 7.47 7.42 7.54 7.49 7.37 7.54 7.74 7.91 7.97 7.58 7.57 7.69 7.44

Ti 3.08 3.24 3.14" 3.02 2.97 14.27 2.70 3.05 3.01 3.14 3.36 3.24 3.34 3.30 3.11 3.21 3.34 3.36 3.55 3.43

SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a

biol bio I biol biolstrand2 rim biolstrand2 rim biolstrand2 in biol strand! in bio 1 slrand2 in biolstrand2 in biolstrand2 in

0.12 0.11 0.12 0.13 0.19 0.15 0.16 0.14 0.09 0.09

0.349 0.304 0.314 0.229 0.306 0.341 0.331 0.327 0.334 0.321

8.73 8.88 8.93 8.09 9.06 8.98 8.89 8.98 8.91 9.79

6.99 6.87 6.90 6.75 7.14 7.06 7.13 7.00 6.78 6.84

17.98 17.84 17.59 17.69 17.93 17.69 17.66 17.62 17.85 19.14

7.70 7.73 7.68 6.50 7.72 7.71 7.73 7.72 7.85 7.72

2.94 3.11 3.17 4.26 3.22 3.28 3.11 3.15 3.01 2.53

11.72 11.47 11.42 10.19 11.40 11.39 11.53 11.14 10.94 10.90

0.05 0.04 0.05 2.44 0.02 0.00 0.02 0.02 0.04 0.05

SMPW-1 SMPW-1 SMPW-I SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1

1 bio I a core biola in bio la rim bio lb rim bio lb in biolb in bio lb near core biolb near core bio closestmtlb r bio2 rim

0.16 0.23 0.13 0.08 0.18 0.17 0.18 0.10 0.16 0.23

0.065 0.028 0.067 0.054 0.073 0.049 0.055 0.072 0.062 0.052

7.07 7.89 7.89 7.86 8.40 8.19 7.68 7.87 6.86 8.73

7.10 7.64 7.30 6.87 7.05 7.21 8.28 8.89 7.01 7.23

16.18 17.12 17.08 17.33 17.21 17.13 16.41 15.45 16.04 17.66

7.37 7.25 7.62 7.60 7.61 7.47 7.18 7.41 7.19 7.37

2.52 2.45 2.37 2.18 2.34 2.43 2.68 2.48 2.48 1.92

13.50 13.48 13.79 13.14 12.67 12.96 13.29 12.62 14.70 12.43

0.09 0.12 0.06 0.09 0.04 0.04 0.06 0.10 0.10 0.10

Ca Fe Mn 11.20 0.10 0.25 10.52 0.03 0.21 11.60 0.13 0.19 11.26 0.13 0.22 11.56 0.12 0.23 0.99 19.90 0.06 9.94 0.16 0.18 7.68 0.16 0.05 8.03 0.13 0.12 8.16 0.07 0.11 8.23 0.08 0.06 8.43 0.12 0.08 8.33 0.07 0.04 8.79 0.03 0.13 8.62 0.03 0.13 8.90 0.03 0.10 8.68 0.06 0.09 8.72 0.03 0.11 9.24 0.02 0.14 10.14 0.02 0.15

P 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

F 0.228 0.318 0.338 0.237 0.228 2.261 0.310 0.645 0.938 1.009 0.765 0.999 1.025 0.459 0.443 0.522 0.755 0.443 0.450 0.533

0.13 0.13 0.13 0.14 0.13 0.12 0.15 0.12 0.14 0.12

0.000 0.000 0.013 0.005 0.002 0.013 0.007 0.014 0.000 0.000

0.720 0.754 0.808 0.678 0.449 0.567 0.550 0.411 0.804 1.411

0.31 0.37 0.36 0.35 0.32 0.35 0.39 0.31 0.41 0.34

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02

0.851 1.025 1.054 0.838 1.157 0.974 1.028 0.886 0.764 1.052

Cr

Co

Ni

Cu

Zn

0.04 0.00 0.00 0.04 0.05 0.01 0.05 0.01 0.01 0.00

Sum 92.50 ^ 93.08 92.01 91.87 93.03 96.48 90.96 91.52 93.85 93.59 93.46 94.31 94.12 94.50 94.75 94.60 94.19 93.79 94.47 94.35 96.54 96.16 95.82 96.44 97.20 96.48 96.39 95.59 95.44 99.08 91.50 95.89 95.67 93.99 94.88 94.90 95.18 93.47 92.02 95.57

Pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1

Mineral Comments bio2 in bio2 core bio3 rim near mt5 bio3 in bio3 in bio3 core

Na 0.24 0.17 0.12 0.17 0.29 4.04

CI 0.052 0.050 0.070 0.048 0.052 0.065

Mg 8.68 8.50 9.75 8.27 8.68 9.14

A! 7,16 7,43 7.39 7.56 7.34 7.87

Si 17.10 17.15 18.63 17.52 17.54 17.92

K 7.65 7.63 7.75 7.78 7.49 7.53

Ti 2.28 2.00 1.70 2.57 2.48 2.30

Fe 12.61 13.27 11.28 12.99 12.28 11.76

Ca 0.05 0.07 0.17 0.05 0.08 0.10

Mn 0.31 0.40 0.30 0.36 0.33 0.29

P 0.00 0.00 0.00 0.00 0.00 0.00

F 0.990 0.960 1.782 1.113 1.408 1.331

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

1 biol rim to Ksp biol near rim biol in biol in biol in biol in biol near core biol core biol core bio2 rim bio2 near rim bio2 in bio2 in bio2 in bio2 core bio3, near rim bio3, near rim bio3,in bio3, in bio3,in bio3, near core bio3, core

0.16 0.15 0.19 0,12 0.12 0.17 0.17 0.12 0.10 0.10 0.11 0.14 0.16 0.16 0.17 0.14 0.16 0.18 0.17 0.17 0.16 0.15

0.179 0.186 0.193 0.191 0.196 0.209 0.209 0.167 0.189 0.191 0.209 0.182 0.210 0,198 0.195 0,179 0.218 0.204 0.176 0.219 0.174 0.220

9.46 9.79 10.04 10.19 10.84 10.19 9.99 10.68 10.76 10.26 10.11 10.00 10.32 9.95 9.94 10.22 9.89 10.17 10.09 10.44 9.89 9.70

7.58 7.60 7.66 7.71 7.20 7.72 7.62 7.51 7.64 8.09 8.02 7.86 7.88 7.80 7.68 7.89 7.64 7.79 7.62 7.70 7.51 7.26

17.62 18.09 17.77 17.95 18.34 17.78 17.48 17.97 18.04 17.77 17.68 17.94 18.16 17.73 17.80 17.91 17.64 17.84 17.74 17.74 17.79 17.51

7.71 7.77 7.75 7.80 7.58 7.72 7.54 7.87 7.94 7.75 7.81 7.71 7.70 7.89 7.71 7.86 7.63 7.71 7.67 7.56 7.62 7.65

2.62 2.68 2.70 2.55 2.36 2.69 2.59 2.52 2.67 2.11 2.44 2.49 2.87 2.87 2.60 2.13 2.93 2.67 2.78 2,85 2.77 2,85

8.48 8.78 8.75 8.91 8.30 8.77 8.44 8.32 8.50 7.45 8.07 8.45 8.65 8.53 8.63 8.43 8.69 8.80 9.07 8.84 8.68 8.95

0.03 0.01 0.01 0.01 0.05 O.OI 0.04 0.04 0.04 0.03 0.01 0.01 0.01 0.01 0.00 0.02 0.02 0.03 0.01 0.05 0.02 O.OI

0.04 0.06 0.04 0.06 0.04 0.00 0.07 0.04 0.05 0.01 0.04 0.05 0.06 0.03 0.02 0.06 0.05 0.04 0.05 0.10 0.06 0.02

0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.865 0.888 0.772 0.811 1.059 0.771 0.814 0.815 0.922 0.998 0.923 0.921 1.030 0.809 0.871 1.015 0.766 0.944 0.787 0.805 0.807 0.681

93.24 95.41 95.13 95.83 95.61 95.43 93.64 95.61 96.75 93.67 94.53 95.05 97.11 95.34 94.71 95.03 94.74 95.85 95.51 96.10 94.55 93.55

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

1 biol rim biol near rim biol in biol in biol in biol rim to apl biol overgrowth biol ovrgrowth in bio 1 ovrgrowth in biol near core biol core biol core

0.114 0.1 0.148 0.158 0.158 0.147 0.089 0.086 0.098 0.182 0.136 0.224

0.369 0.436 0.359 0.375 0.343 0.416 0.421 0.436 0.434 0.357 0.347 0.332

9.158 9.164 9.001 9.029 9.217 9.755 10.22 10.23 10.25 9.025 9.18 9.154

6.795 6.826 6.975 6.93 6.859 6.026 6.271 6.238 6.264 6.802 6.948 6.868

17.13 17.43 16.93 17.07 17.14 17.91 18.28 18.13 18.32 17.31 17.32 17.3

7.833 7.735 7.825 7,689 7.84 7.427 7.626 7.675 7.729 7.59 7.779 7.678

2,628 2,591 2,814 2,869 2,9.34 2.409 2.415 2.532 2.563 3.015 2.913 2.971

10.95 10.86 11.5 11.17 11.16 10.2 9.635 9.709 9.502 11.49 10.96 11.21

0.006 0.014 0 0.045 0.017 0.168 0.172 0.14 0.042 0.044 0 0.018

0.248 0.212 0.231 0.226 0.27 0.256 0.174 0.238 0.227 0.244 0.262 0.243

0 0.005 0.01 0.002 0.003 0.01 0.03 0.007 0.014 0.003 0 0.008

0.981 1.09 0.755 1.02 1.114 1.202 1.015 1.279 1.529 0.904 0.947 0.751

93.91 94.41 94.48 94.44 95.1 93.77 95.08 95.21 95.58 95.23 95.07 95.14

Cr

Co

Ni

Cu

Zn

Sum 95.12 95.85 98.55 97.29 96.50 103.18

pyroxene, amphibole and biotite analyses

Biotite analyses

Sample # SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Mineral Comments biol loZ band ncr bio2 rim bio2 near rim bio2 in bio2 in bio2 near core bio2 core bio2 core bio3 rim bio3 core bio4 core bio4 near core bio4 in bio4 in bio4 near rim bio4 rim bio5 rim bio5 near rim bio5 in | bio5 rim to mt bio5 rim to ap bio6 flat bio6 flat nearrim bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat in bio6 flat ncore bio6 flat core bio6 flat core

Na 0.099 0.072 0.091 0.11 0.117 0,086 0.073 0.135 0.078 0.078 0.118 0.12 0.123 0.117 0.1 0.082 0.071 0.092 0.09 0.066 0.111 0.09 0.074 0.05 0.083 0.116 0.124 0.127 0.123 0.127 0.14 0.112 0.117 0.15 0.104

CI 0.386 0.418 0.365 0.338 0.354 0.384 0.43 0.38 0.41 0.445 0.37 0.387 0.415 0.399 0.419 0.454 0.445 0.424 0.448 0.462 0.383 0.491 0.416 0.383 0.447 0.442 0.448 0.426 0.395 0.408 0.426 0.418 0.38 0.408 0.411

Mg 10.12 10.08 9.982 9.844 9.449 9.722 9.28 9.168 9.704 9.364 9.031 8.846 8.963 9.04 8.712 9.229 10.19 9.945 9.193 10.61 9.674 9.292 9.57 9.055 8.766 8.702 8.67 8.659 8.586 8.554 8.678 8.485 8.507 8.519 8.558

Al 6.326 6.466

6.6O7I 6.613 6.783 6.52 6.77 6,86 6.964 6.88 6.891 6.74 6.911 6.852 6.666 6.98 6.398 6.652 6.851 6.578 6.503 6.426 6.276 6.815 6.845 6.78 6.904 7.024 7.017 6.958 6.916 6.879 6.836 6.969 6.942

Si 18.2 17.44 17.76 17.9 17.54 17.85 17.37 17.39 17.55 17.32 17.31 17.09 17.17 17.22 16.8 17.14 18.17 17.81 17.37 18.31 17.87 18.01 18.03 17.4 17.12 17.16 17.1 17.08 17.08 17.13 17.09 16.93 16.96 17.02 16.94

K 7.555 7.678 7.866 7.818 7.879 7.88 7.804 7.814 7.773 7.537 7.611 7.574 7.688 7.599 7.479 7.668 7.533 7.718 7.414 7.645 7.731 7.321 7.372 7.526 7.379 7.316 7.391 7.476 7.467 7.454 7.53 7.418 7.49 7.447 7.452

Ti 2.71 2.323 2,663 2.771 2,751 2,634 2,712 2,837 2,627 2.524 2.905 3.089 2.928 2.917 2.836 2.896 2.456 2.52 2.734 2.605 2.575 2.36 2.501 2.999 3.01 3.047 3.044 3.243 3.185 3.131 3.124 3.105 3.163 3.266 3.245

Fe 9,897 9,7 10.2 10.49 10,89 10,38 10,94 11.13 10.11 10.32 11.18 10.97 11,24 11.1 10.75 10.8 9.33 9.781 10.58 8.884 9.802 10.45 10.12 10,9 11.14 11,17 11.05 11,23 11,37 10,99 11,03 11,12 11,17 11.34 11.43

Ca 0.042 0,01 0,025 0,009 0 0 0 0 0.031 0.027 0.015 0.012 0,005 0 0.016 0.026 0.189 0.055 0.029 0.019 0.096 0.023 0 0.003 0 0.015 0 0 0,001 0,002 0,006 0 0 0,004 0

Mn 0.211 0.171 0.19 0.25 0.326 0.244 0.277 0.305 0.252 0.239 0.244 0.182 0.233 0.202 0.205 0.263 0.222 0.181 0.189 0.273 0.267 0.243 0.227 0.233 0.234 0.272 0.25 0.259 0.23 0.227 0.22 0.226 0.256 0.229 0.274

P 0.004 0 0.008 0,001 0 0 0 0 0.016 0 0 0 0 0 0.002 0.008 0.003 0.013 0 0.004 0,003 0,006 0 0,008 0,001 0 0 0,008 0.007 0 0.018 0 0 0 0.007

F 1.471 1.2181 I.35T 1.182 1.078 1.228 1.007 1.215 0.989 0.97 0.983 0.846 0.936 0.821 1.092 1.148 1.314 1.006 0.977 1.242 1.055 0.836 1.011 0.754 0.681 0.698 0.597 0.8.39 0.666 0.598 0.762 0.799 0.722 0.535 0.814

Or

Co

Ni

Cu

Zn

Sum 95.64 93.2 95.56 96.08 95.57 95.3 94.72 95.39 94.95 93.5 94.77 93.57 94.59 94.27 91.95 94.64 94.8 94.62 93.77 95.75 94.31 93,63 93,67 94,34 93,51 93,48 93,39 94,37 94.15 93.44 93.78 92.93 93.18 93.85 93.94

OO

Opaque Analyses

Ilmenite and pyrophanite analyses Sample # SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Vlinera

Comments

hem?

ilm-hem mixture?

" Na " 0 0 0.01 6 0.04 0.02 0.03 0.01 0.02 0 0

0 0 0.003 0^ 0.005 0.004 0 0 0 0.01 0.014

Mg 0.013 0.012 0.051 0.042 0.036 0.038 0,04 0.046 0.028 0.034 0.023

0 0.001 0 0.005 0.095 0.005 0.004 0.007 0.004 0.005 0

Si 0.03 0,02 0.02 0^03 0.64 0.03 0.08 0.02 0,09 0,03 0.03

0 0 0 0.01 0.04 0.02 0 0.01 0,04 0,04 0,02

Ti 28.6 29 25.1 25.2 26 23.7 26 26.3 25.6 28.3 26.3

Fe 27.01 27.03 26.01 25.64 22.7 26.39 23.55 24.11 28.47 28.06 30.94

Ca 0.223 0.101 0.124 0.221 0.916 0,164 0,566 0,257 0.059 0,047 0.034

Mn 8.57 8.74 6.12 6.17 6.76 6.47 6.91 6.81 7.41 8.03 7.42

0 0.02 0 0.03 0.02 0.02 0.03 0 0.07 0.02 0.02 0.01 0.02 0.01 0 0.02 0.03 0 0 0.02 0.07 0.01

0.001 0 0.013 0.001 0 0 0 0 0.009 0.004 0.003 0 0.013 0 0.006 0.004 0.004 0.007 0 0.016 0.003 0.018

0.022 0.023 0.014 0.019 0.058 0.043 0.055 0.048 0.386 0.081 0.064 0.059 0.066 0.074 0.063 0.056 0.084 0.043 0.098 0.077 0.027 0.063

0.004 0.003 0.004 0.004 0.008 0.005 0.005 0.015 0.352 0.003 0.007 0.001 0.006 0.003 0.004 0.016 0.013 0.001 0.003 0.003 0.22 0.048

0.03 0.03 0.02 0.06 0.06 0.03 0.05 0.06 3.41 0.1 0,05 0.03 0,03 0.04 0.04 0.1 0.05 0.05 0.03 0.05 3.32 0.61

0.03 0.02 0.04 0.06 0.06 0.03 0.01 0.03 0.24 0.07 0.01 0 0.01 0 0.01 0 0 0 0.01 0 0 0.01

27.7 28.1 27.1 27.6 27.3 27.6 28.3 28 26.5 27.9 27.2 26.3 26.4 26.5 27.7 28 27.7 30.8 28.9 28.9 9.85 28.3

33.15 32.7 33.82 33.09 35.19 35.75 34.94 34.72 25.99 34.83 36.19 37.25 37.11 37.02 35.79 35.68 35.32 32.89 34.49 34.23 50.4 31.37

0,434 0.276 0.185 0.259 0.143 0.127 0.229 0.189 2.599 0.083 0.063 0.02 0.021 0.002 0.005 0.005 0.013 0.014 0.018 0.028 4.081 1.219

0.04 0.03 0.01 1.88 0.74 0.01 0.01 0.01

0 0.006 0.01 0.006 0 0 0 0

0.033 0.025 0.021 0.017 0.119 0.017 0.009 0.034

0.008 0.006 0.028 0.989 2.643 0.003 0.015 0.087

0,03 0,02 0.04 2.15 7.74 0.07 0.05 0.05

0.03 0.01 0.01 0.05 0.09 0.09 0.09 0.03

27.8 28.8 26.6 27.6 19.8 27.3 27 19.9

31.58 30.94 32.18 24.86 23.28 31.9 31.98 42.11

0.028 0.018 0.013 0.203 0.609 0 0.014 0.036

CI

Al

K

F 0 0.118 0 0.429 0 0 0.591 0 0 0 0.139

Sum 94 94.77 83.5 83.74 84.33 82.33 84.09 84.21 89.29 93.87 93.54

4.57 5.52 5.29 5.43 3.16 3.18 3.39 3.23 2.72 3.42 3.3 3.18 3.31 3.37 3.34 3.56 3.65 1.22 3.48 3.62 0.68 3.67

0 0 0.527 0.534 0 0.576 0 0.196 0.769 0.777 0.383 0 0 0.315 0 0 0 0 0 0 0.607 1.077

95.54 96.68 96.18 96.57 95.49 96.79 97.03 96.18 94.24 96.76 96.78 96.1 96,31 96,6 96,78 97,62 96,75 95,49 97.33 97.28 95.9 96,16

5.95 5.87 5.68 5.08 2.9 5.16 5.35 3.04

0 0 0.205 0.794 0.478 0.275 0.751 0

94,96 95.58 93,46 94.4 90.67 93.62 93.81 91.7



Cr

Co

Ni

Cu

Zn

Opaque Analyses

Ilmenite and pyrophanite analyses Sample # SMCA-8 SMCA-8 SMCA-8 SMCA'-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

Vlinera

Comments

Na " 0.03^ 0.1 0 " 0 0.01 0 0.02 0

CI 0 0.013 0 0 0.017 0.001 0.001 0.014

Mg 0.021 0.04 0.022 0.046 0.026 0.03 0.024 0.033

Al 0.01 0.207 0.008 0.01 0.01 0.039 0.008 0.007

Si 0.03 1.06 0.04 0,05" 0.04 0.17 0.06 0.04

K Ti 0.02 29.4 0^03 26.2 0.02 28.4 ' 0 28.2 0 29.3 0.19 28.7 0.05 28.5 0.03 28.2

SMCM-6 SMCM-6

0 0.02

0 0.007

0.024 0.01 0.05 0.018 0.007 0.04

0.03 27.9 28.74 0 28.2 28.66

0,17 8,72 0.298 8,61

SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a

0 0 0.01 0 0 0 0 0.01 0.02 0.01

0.002 0 0.008 0 0 0.004 0.007 0.007 0 0

0.052 0.052 0.04 0.052 0.041 0.009 0.014 0.004 0.064 0.077

0.012 0.001 0.008 0.012 0 0 0.005 0 0.012 0.003

0.06 0.01 0.02 0.05 0.03 0.04 0.04 0.03 0.07 0,04

0.01 0 0,01 0 0.01 0.01 0.01 0.01 0.02 0.01

27.5 27.5 27 27.4 26.7 29.4 28.6 28,4 27.7 27.8

33.95 34.44 36.16 35.48 36.26 33.28 32.95 33.34 34,56 34,77

0,145 0.097 0.111 0.354 0.262 0.083 0.059 0.067 0.292 0,187

SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a

rut?

0.02 0 0.01 0.03 0.02 0.02 0 0 0.02 0.04 0 0.03 0.02 0.03 0.01 0.01 0.02

0 0 0.01 0.012 0.004 0.001 0.004 0.007 0.009 0.012 0.012 0,005 0 0 0 0.009 0.011

0.006 0 0.015 0.009 0.022 0.017 0.013 0.008 0 0.02 0.015 0.03 0.027 0.008 0.025 0.021 0.029

0.015 0.029 0.022 0.039 0.07 0.013 0.041 0.011 0.002 0 0,016 0,03 0,002 0.013 0.005 0.052 0.004

0,08 0,15 0,06 0,19 0,15 0,07 0,1 0.19 0.02 0.04 0.05 0.09 0.03 0.11 0.12 0.21 0.06

0 0.05 0.01 0.01 0.02 0.01 0.01 0 0.01 0.01 0.02 0.04 0.09 0.11 0.13 0,08 0.15

28.6 30.8 19.2 20.4 31.1 28.2 28.3 14.4 50.6 29.6 27,8 30.2 30.4 30.1 26.7 29.6 28.8

32,75 30,16 42,96 40,25 25.46 9.188 16 50.38 10.42 5.814 15.61 10.37 4.461 3.159 32.43 23,17 22,74

0,442 0,349 0,053 0,037 0.103 0.078 0.106 0.25 0.034 0.04 0.033 0.063 0.122 0.27 0.19 0.163 0.052

SMPG-1 SMPG-1

hem? hem?

0 0

0.002 0.01

0.043 0.058 0 0.01 0.032 0.062 0.01 0.01

Fe 31.92 33.41 32,57 33,03 31,69 31,31 32,36 32.88

13 54,66 13.3 54.28

Ca 0.028 0.112 0.033 0.045 0.012 0.01 0.034 0.022

Mn 4.31 3.78 4,74 5,11 4,91 4,63 5,49 5,45

_—_

F

Cr

Co

0 0 0^12 0 0 0 0 0.12

Cu

Zn

Sum 95,88 94,72 95.68 96,45 96,12 94,88 96,64 96,63

0.65 0.58

95.72 95.88

4,63 4.66 4.31 4.29 4.14 5.19 5.58 5,38 4.3 4.53

0 0.034 0 0.025 0 0 0 0,103 0,059 0

96.14 96.57 97.42 97.68 97.03 98.73 97.55 97.57 96.99 97.44

1.07 1.44 2.08 3.34 5.6 27,7 19,5 1,03 0,14 30,2 20,8 23,8 30.8 31.8 2.29 8.73 11.3

0.32 0 0 0 1.29 0.278 1.416 0.232 0 0.676 0 0 1.654 0.697 0,074 0,039 0

92.31 92.97 90.21 90.7 93.33 95.11 94.35 91.05 98.11 96.46 93.57 94.88 97.66 96.61 89.91 91.49 92.33

0 0.07 0.016 0.03

0 0

92.28 92.22

U) ON O

Opaque Analyses

Ilmenite and pyrophanite analyses Sample SMPG-1

it

0

CI 0.009

Mg A1 0.045 0.076

Si 0.01

Ti Fe 10.1 58.89

Ca Mn 0.004 0.02

0.02 0 0.02

0.01 0.031 0.017

0.026 0.288 0.009 0.272 0.022 0.345

1.13 0.02 34.8 20.66 1.02 0.02 32.1 22.95 1.64 0.04 34.2 20.53

0.01 0.01 0.51 0 0

0.004 0 0 0 0

0.022 0.041 0 0.031 0.025

0.01 0 29.5 0.03 0.02 28.8 23 6.57 0 19 0.03 0 0.04 0 19.2

SMNA-4 SMNA-4

0 0.01

0.012 0.002

0.053 0.005 0.02 32 29.84 0 0.048 0 0.02 0.01 29.6 33.14

SMNC-1

0

0.014

0.048 0.338

2.68

0.01 0 0.01 0.01 0.01 0.01 0 0.01

0.006 0.009 0.001 0 0 0.002 0.007 0

0.345 0.317 0.393 0.18 0.295 0.193 0.061 0.267

0.04 0.02 0 0.03 0.02 0.02 0.05 0.02

SMPW-1 SMPW-1 SMPW-1 SMNA-2a SMNA-2a SMNA-2b SMNA-2b SMNA-2b

SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Vfinera hem?



Kspar?

mt? mt?

Comments

Na

0.001 0.033 7.993 0 0.024

0.579 0.552 0.088 0.094 0.123 0.098 0.1 0.163

K 0

34.43 34.47 0.116 18.68 18.55

0 27.2 26.61 0.01 0.01 0.01 0.02 0.01 0 0.03 0.01

2.43 2.42 20.8 21.1 17.9 17.4 23.4 17.4

66.11 66.23 42.88 40.97 45.61 46.13 37.34 46.37

0

Sum 92.88

0.292 0.11 0.214 0.16 0.297 0.13

0.031 0 0

88.23 86.36 88.36

0.033 5.05 0.132 4.64 0 0 0 2.69 0.043 2.4

0 0 0 0 0

100.6 99.05 103.1 97.65 97.83

6.83 5.4

0 0

101.2 99.76

3.853 3.95

0.311

96.71

0 0.006 0.338 0.243 0.052 0.446 0.311 0.294

0 0 0 0.045 0 0.041 0 0.04

92.22 92.3 92.3 90.54 90.26 90.48 90.13 90.69

0.05 0.16

1.05 1.09 0.91 1.35 0.67 0.71 1.74 0.56



F

Cr

Co

Ni

Cu

Zn

Opaque Analyses

Magnetite analyses Sample # SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Vlinera

Comments

0 0 0.02 0 0.01 0

CI 0.002 0.008 0.005 0.003 0.018 0

0 0.001 0.002 0.006 0.012 0.006

Al 0.023 0.03 0.026 0.035 0.033 0.034

Si K 0.02 0 0.02 " ~ 0 0.09 0 0.03 0 0.02 0 0.04 0.01

Ti 0.04 0.1 0.64 0.25 0.14 0.09

Fe ^ 68.13 70.29" 60.58 61.07 60.94 6T^

Ca 0.024 0.019 0.136 0.028 0.025 0.007

Mn 0.03 0.06 0.11 0.04 0.07 0.06

0 0 0 0.341 0 0

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5

0.02 0.01 0.05 0.02 0.02 0.01 0 0.02 0.02 0 0.01 0.01

0.005 0 0.014 0 0.004 0 0.009 0.006 0 0 0 0.001

0.014 0 0.023 0.01 0 0.003 0 0.01 0.034 0.005 0.01 0

0.052 0.034 0.042 0.055 0.039 0.037 0.025 0.035 0.125 0.043 0.04 0.045

0.27 0.05 0.29 0.17 0.03 0.24 0.07 0.04 0.36 0.03 0.06 0.1

0.01 0 0 0.01 0 0 0.01 0 0.01 0 0.01 0.02

0.02 0.06 0.01 0.03 0.02 0.02 0.04 0.43 0.4 0.24 0.16 0.19

69.05 70.08 68.29 69.11 71.02 69.2 69.95 70.77 68.11 70.13 71.07 70.34

0.067 0.019 0.033 0.022 0.022 0.053 0.056 0.025 0.091 0.012 0.023 0.024

0 0.02 0 0.03 0 0.02 0.02 0.03 0.03 0.01 0.03 0

0 0 0 0 0.334 0.122 0 0.216 0.156 0.031 0.123 0

89.72 90.48 88.8 89.58 91.79 89.87 90.38 92.18 89.65 90.84 92.06 91.18

SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8 SMCA-8

0 0 0.01 0.02 0 0.02 0 0

0.009 0 0 0.001 0.019 0 0 0.002

0.009 0.015 0.01 0.012 0.013 0.004 0.005 0.004

0.09 0.106 0.089 0.03 0.047 0.086 0.087 0.071

0.03 0.05 0.05 0.08 0.07 0.05 0.04 0.05

0.01 0.02 0.01 0.1 0.07 0.1 0.04 0

0.64 0.47 0.2 0.61 0.09 0.19 0.18 0.67

69.93 70.13 70.58 69.5 68.94 69.95 70.13 69.54

0 0.018 0 0.009 0.497 0 0.004 0.016

0.13 0.12 0.06 0.07 0.03 0.04 0.03 0.03

0 0 0 0 0 0.051 0.078 0.024

91.5 91.57 91.51 90.91 90.27 90.83 90.94 90.93

SMCM-6 SMCM-6 SMCM-6a SMCM-6a SMCM-6a

0.01 0 0.01 0 0.02

0 0.001 0.015 0.003 0.008

0 0 0.005 0 0.017

0.019 0.06 0.01 0.042 0.02 0.01 0.016 0.07 0 0.019 0.05 0 0.017 0.11 0.06

0.03 0.09 0 0.02 0.09

69.51 70.53 69.52 70.34 69.42

0.142 0.051 0.157 0.13 0.028

0.01 0.06 0.05 0.07 0.03

0 0.217 0 0 0

89.87 91.3 89.96 90.95 89.93

SMCM-9a SMCM-9a

0 0.01

0.003 0

0.01 0,049 0.03 0.007 0.05 0.04

0.01 0.01

0.09 71.81 0.22 71.43

0.015 0.03

0.04 0.06

0.07 0

92.83 92.74

SMCM-11a SMCM-11a SMCM-lla SMCM-11a SMCM-lla

0.06 0.04 0 0.03 0.01

0.016 0.012 0 0 0

0.03 0.052 0.018 0.045 0.048

0.04 0.05 0.04 0.05 0.03

0.11 0 0.02 0.04 0.04

0.086 0.075 0.054 0.083 0.054

0.09 0 0.06 0.04 0.06

0.152 0 0 0 0

86.55 87.02 87.6 86.99 87.26

- - -

Na

Mg

0.25 0.328 0.173 0.287 0.155

0.42 0.67 0.37 0.65 0.29

65.64 65.76 66.95 65.78 66.82

Page 1

F

Cr

Co

--

Ni

-

Cu

Zn

Sum 87.92 '90.8 79.62 79.41 78.91 79.16

On

N)

Opaque Analyses

Magnetite analyses Sample #

Vlinera

SMCM-11a SMCM-11a " SMCM-11a" SMCM-lla SMCM-11a SMCM-lla SMCM-lla SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a SMCM-11a

Comments

"""Na"

CI

Mg

Al

Si

Co

Fe

Ca

Mn

65.88 66.68 66.52 65.97 67.03 67.32 67.32 65.55 57.23 67.21 66.85 67.43 67.89

0.077 0.06 0.069 0.048 0.068 0.06 0.04 0.076 0.219 0.056 0.032 0.046 0.033

0.07 0 0.05 0.02 0.02 0.03 0.04 0.03 0.06 0.02 0.06 0.02 0.01

0.184l 0.121 0.184 0.336 0.061 0.392 0.688 0.215 0.226 0 0 0.33 0

87.77 87.73 88.15 87.6 87.93 88.27 88.07 87.41 81.05 87.46 87.27 87.71 87.98

0.05 67.96 0.06 68.92 0.07 68.11 0.09 68.1 0.06 68.5

0.029 0.006 0.034 0.058 0.04

0.04 0.03 0.04 0.06 0.02

0 0 0 0 0

88.91 89.22 88.94 89.07 88.88

0.095 0.105 0.124 0.119 0.123 0.147

0.02 0.01 0.17 72.91 0.03 0 0.06 72.07 0.01 0 0.09 72.85 0.01 0 0.1 73.17 0.01 0 0.12 73.49 0.09 0.01 0.09 70.62

0.009 0.016 0 0.006 0.012 0

0.13 0.12 0.16 0.08 0.11 0.07

0 0 0 0 0 0

94.51 93.35 94.38 94.96 95.33 91.8

0.07 0.047 0.045 0.136 0.016 0.015 1.309 0.027 0.083 1.054 0.118 0.052 0.041 0.113 0.073 0.099

0.23 0.02 0.03 0.22 1.32 2.04 5.78 0.03 0.16 0.05 0.76 0.43 0.04 0.04 0.05 0.02

0.008 0 0.032 0.039 0.411 0.577 6.235 0.207 0.101 0.047 0.271 0.576 0.043 0.014 0.037 0.033

0.04 0.09 0.09 0.07 0 0.01 0.04 0.07 0.07 0.04 0.02 0.09 0.13 0.08 0.07 0.09

0.024 0 0 0 0 0 0.162 0 0.045 0.029 0.012 0 0 0.004 0.041 0

88.98 90.58 89.95 89.82 76.23 80.47 81.66 89.42 89.57 90.04 91.02 88 90.98 89.21 91.25 90.36

0 0 0.014 0.015 0.012 0.001 0.008 0.004 0.019 0.008 0.01 0.009 0

0.053 0.05 0.045^ 0.055 0.028 0.014 0.023 0.081 0.121 0.024 0.029 0.017 0.016

0.332 0.248 0.214 0.291 0.201 0.201 0.152 0.344 0.664 0.173 0.191 0.074 0.08

SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1

0 0 0 0 0

0.001 0.005 0.005 0 0

0.015 0.012 0.004 0.014 0.007

0.236 0.37 0 0.155 0.03 0 0.222 0.3 0 0.157 0.37 0 0.169 0.1 0.02

SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5 SMPG-5

0 0 0 0 0.01 0

0 0 0 0.277 0.088 0,213

0.008 0.01 0.008 0.007 0.013 0.009

SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1 SMPW-1

0.07 0 0 0.09 0 0.01 0.08 0.01 0.03 0.02 0.01 0.01 0 0.01 0 0

0 0 0.001 0.012 0.006 0.^ 0.004 0 0 0.008 0.003 0.003 0 0.012 0 0.001

0.002 0 0.001 0.067 0.059 0.086 0.3 0.007 0.007 0 0.003 0.146 0.006 0.004 0 0.023

hem?

Cr

Ti

0.14 0.08 0.37 0.14 0.22 0.15 0.04 0.09 0.16 0.05 0.08 0.04 0.03

0.75 0.46 0.45^ 0.67 0.27 0.27 0.23 0.82 2.29 0.16 0.24 0.15 0.14

K

0.04 0.04 0.08 0.06 0.03 0.01 0.01 0.02 0.16 0.02 0 0.03 0.03

0.04" 0.02 0^02 0.03 0 0.01 0.02 0.04 0.03 0 0.03 0.02 0.02

0.12 0.01 0 0.06 0.02 0.01 0.04 0 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01

0.06 0.07 0.08 0.06 0.14 0.12 5.32 0.02 0.06 0.08 0.12 0.07 0.11 0.42 0.1 0.29

68.35 70.13 69.58 68.82 56.31 58.19 37.65 69.05 68.91 68.11 68.79 66.58 70.25 68.44 70.46 69.51

Page 2



F

Ni

Cu

Zn

Sum

opaque Analyses

Magnetite analyses

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

Comments

Sa 0.02 0.02 0

CI



A1 Si K Ti Fe 0 0.119 0.04 0.02 0.32 68.94 0.003 0.015 0.03 0.01 0.08 73.8 0.069 0.015 2.31 0.01 0 64.71 Mg

6 1O

Vlinera

O

Sample #

SMPW-1 SMPW-la SMPW-la

1 Ca

Mn

-



F

Cr

Co

1

Ni

Cu 1

Zn

Sum

6.037 0.01 0.135 0.08 0.759 0.43

0.061 0 0

89.68 95.51 90.09

0 0.04 0.02 0 0.01 0 0.02 0.01

0 0.058 0.003 0.005 0 0.014 0.001 0.009

0 0.01 0.005 0.009 0.01 0.009 0 0.002

0.042 18.42 0.047 0.062 0.051 0.06 0.126 0.069

0.04 0.59 0.05 0.04 0.04 0.05 0.04 0.05

0.02 0.02 0 0 0 0.03 0.02 0.02

0.08 0.07 0.09 0.14 0.12 0.14 0.22 0.17

72.04 52.68 71.57 72.03 72.27 71.94 71.74 71.7

0.1 0.121 0.017 0.015 0.007 0.021 0.035 0.063

0.01 0.05 0.09 0.06 0.03 0.06 0.05 0.04

0.022 0 0 0 0 0 0.045 0.007

93.28 104.4 92.6 93.21 93.42 93.18 93.17 92.97

0 0.01 0 0 0 0 0 0 0 0 0 0.05 0 0 0

0.001 0.004 0.013 0 0.01 0.008 0 0 0 0 0 0 0 0 0

0.006 0.004 0.016 0.012 0.012 0.003 0.016 0.037 0 0 0 0.043 0 0.037 0.035

0.267 0.05 0.096 0.201 0.107 0.099 0.084 0.017 0.184 0.239 0.25 0.475 0.069 0.328 0.354

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.05 0.04 2.51 0.07 0.04 0.05

0 0 0.01 0.01 0.01 0.01 0 0 0 0 0 0.03 0 0 0

0.14 0.18 0.16 0.27 0.29 0.15 0.08 19.2 0.17 0.07 0.13 0.19 0.24 0.13 0.08

72.97 73.1 73.71 72.42 72.43 72.7 73.53 18.52 49.38 49.47 49.37 45.09 49.34 49.19 49.29

0.108 0.103 0.005 0.115 0.111 0.017 0.014 0.033 0.023 0 0 0.115 0.042 0.026 0

0.05 0.01 0.01 0.07 0.05 0.05 0.01 2.57 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94.88 94.66 95.39 94.31 94.2 94.12 94.98 98.19 90.43 90.15 90.82 90.49 90.86 90.65 91.03

SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNA-4

0 0 0.02 0.01 0.02

0.003 0 0 0.001 0

0.013 0.006 0.01 0.058 0.01

0.114 0.225 0.067 0.135 0.12

0 0.27 0.02 0.12 0 0.11 0.01 0 0.19 0.6 0.03 0.07 0 0.19 0.05

73.51 70.66 73.67 70.82 70.36

0.027 0.053 0.008 0.037 0.03

0.04 0.07 0.07 0.04 0.07

0 0 0 0 0.01

95.4 91.95 95.38 93.03 91.36

SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1

0 0.01 0.02 0 0 0.03 0 0.01

0.01 0 0.11 0.1 0.17 0.08 0.1 0.07

0.2 0.44 0.05 0.11 0.04 0.04 0.2 0.13

0.21 1.11 0.18 0.09 0.03 0.12 0.03 0.06

0.56 0.01 0.25 66.75 0.14 0.02 2.79 63.28 1.84 0 0.01 60.2 0 0.02 60.39 1.9 0 0.02 60.94 2.53 1.59 0 0 63.24 0 0.01 57.57 1.77 0 2.17 0 60.74

0.97 0.55 0.62 0.44 0.48 0.33 0.25 0.34

0.3 0.67 0 0.01 0 0.05 0.01 0

0 0.07 0 0 0 0 0 0

89.99 90.91 82.78 82.83 84.78 85.68 78.7 83.67

SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b

hem?

ilm?

Page 3

UJ

On

4^

opaque Analyses

Magnetite analyses Sample # Vlinera SMNC-1 ^ SMNC-1 SMNC-1 SMNC-I SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMNC-1 ilm? SMNC-1 SMNC-1 SMNC-1 SMNC-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Comments

Na 0.01 0.03^ 0 0.03 0 0.01 0 0 0 0.01 0.01 0.02 0.01 0.02 0.4 0 0 0.04 0.01 0 0.02 0.03 0.01 0 0,02 0 0 0.05 0.02 0 0.02 0.02 0.01 0 0 0.01 0.02 0

CI 0.14 0.1 0.13 0.19 0.12 0.14 0.05 0.04 0.01 0.09 0.12 0.07 0.033 0.037 0.023 0.026 0.027 0.033 0.01 0.026 0,038 0.035 0,006 0.01 0,002 0,012 0,026 0,058 0.008 0.029 0.033 0.011 0.005 0.001 0,003 0 0 0

Mg 0,13^ 0,2 0,3 0,09 0,22 0,25 0,17 0,03 0,07 0,04 0,03 0,04 0,027 0,123 0,102 0.195 0.242 0.152 0.052 0.071 0.094 0.109 0.111 0.296 0.039 0.055 0.258 0.053 0.015 0.087 0.1 1.068 0.009 0.095 0.103 0.154 0.52 0.48

Al 0.05 0.06 0.04 0.05 0.08 0.05 0.04 0.11 0.04 0.05 0.04 0.26 2.015 0.033 0.413 0.037 0.039 0.026 0.22 0.058 0.084 0,058 0,074 0,012 0,041 0,095 0,007 0,08 0,188 0,104 0.14 1,265 0,063 0,866 0,45 1,259 1,039 0,996

Si 2.63 2.22 2.43 2.66 2.56 2.09 1.6 1.09 1.92 1.99 2,42 2,18 7.28 2,78 3.41 2.56 2.31 2.77 1.25 2.68 2.89 2.9 2.41 1.87 0.65 2.09 2.3 2.38 1.92 2.48 3.19 0.05 0.06 0.07 2.11 0.21 0.05 0.04

0.01 0.02 0 0

0 0 0,006 0

0.393 0.348 0.392 0.448

0.693 0.538 0.559 0.491

0.04 0.01 0.02 0.01

K 0.01 0 0.01 0 0.01 0 0 0 0 0 0 0.01 0.01 0 0.01 0.01 0 0.01 0.01 0.04 0 0 0 0.01 0 0.01 0 0.02 0.01 0 0 0 0 0,08 0,02 0 0 0

Ti 0,01 0 0 0,02 0 0 0 0,01 0 0,02 0,02 0,03 0,03 0 0 0 0 0 0 0 0,02 0 0 0,01 0 0,01 0 0,01 0 0 0,03 3,8 0,12 1,36 26.6 0,52 4,36 4,34

Fe 59,66 1 58,79 59,25 59,92 60,31 58,56 57,76 63,66 56,27 61,27 61,06 60.65 36.62 56.59 54.31 56.39 56.19 57.17 61.7 56.19 56.5 57.36 56.53 55.59 56.91 58.03 56.05 57.9 60.1 57.95 55.98 60.56 67.46 65.47 27.64 64.7 60.76 61.56

Ca

0.^ 0.37 0.42 0.59 0.48 0.35 0.18 0.23 0.21 0.34 0.47 0.47 8.006 0.47 0.419 0.335 0.293 0.369 0.277 0.384 0.631 0.505 0.498 0.264 0.123 0.431 0.301 0.397 0.355 0.425 0.459 0 0.391 0.121 2.094 0.202 0.295 0.179

0 2,18 66.07 0 2.01 66.19 0 2,05 66.66 0 1,82 65.63

0.048 0.247 0.127 0.007

Page 4

^ Mn 0 0 0 0 0.02 0 0.01 0.03 0 0 0.03 0 0.15 0.01 0 0.01 0.02 0.07 0.07 0.01 0.04 0.02 0.04 0 0.01 0.05 0.01 0 0.12 0.03 0.03 0.41 0.24 0.19 3.63 0.09 0.82 0.74 0.75 0.64 0.79 0.63

F



1

^ 0 0 0 0.07 0 0.02 0.03 0.01 0 0 0 0 0.009 0,009 0 0 0.044 0 0.013 0 0,083 0 0 0 0 0,086 0.065 0 0 0 0.024 0.008 0 0 0 0 0

Or

Sum 83.55 81.47 82.68 84.08 84.44 80.92 78.4 84.92 77.03 83.82 84.69 84.04 78.03 79.75 79.27 78.93 78.17 80.49 83.07 78.88 80.22 81.14 78.97 76.44 74.96 80.1 77.97 80.57 82.48 80.87 80.07 89.1 88.12 88.97 93.13 87.61 89.87 90.4

0 0.02 0.008 0

91.74 91.34 92.17 89.99

Co

Ni

Cu

Zn

ON

LA

Opaque Analyses

Magnetite analyses Sample # SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1 SMRN-1

Vlinera

hem?

Comments

Na 0 0 0.04 0.05 0 0.04 0 0.02 0.02 0 0 0.01 0.17 0.02 0.02 0 0 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0 0 0 0

CI

1

0 0 0.003 0.027 0.004 0.015 0 0 0.005 0.006 0 0.004 0 0.015 0 0 0 0 0 0.009 0.001 0 0.007 0.001 0 0 0.009 0

Mg 0.3M 0.284 0.343 0.172 0.438 0.175 0.394 0.33 0.322 0.363 0.399 0.354 0.477 0.429 0.145 0.472 0.367 0.327 0.369 0.331 0.406 0.32 0.362 0.427 0.38 0.438 0.325 0.329

A1 0.523 0.458 0.495 2.678 0.53 17.92 0.528 0.545 0.499 0.551 0.548 0.448 4.911 0.466 1.007 0.551 0.514 0.551 0.561 0.554 0.483 0.654 0.532 0.614 0.56 0.641 0.493 0.518

Si 0.03 0.03 0.01 0.22 0.01 0.56 0.25 0.11 0.03 0.03 0.02 0.01 0.85 0.03 0.07 0.03 0.02 0.03 0.03 0.03 0.03 0.02 0.03 0.03 0.07 0.02 0.04 0.02

K 0.03 0.03 0 0.06 0.01 0.02 0.02 0.01 0.02 0 0.01 0 0.28 0 0.06 0 0 0.02 0 0.02 0.01 0.01 0.02 0 0.01 0 0.03 0

Ti 2.48 2.07 1.75 1.79 1.96 1.49 2.05 2.01 2.29 2.22 2.8 1.67 1.53 1.63 1.46 2.07 1.9 2.5 2.45 2.55 1.74 2.89 2.79 2.21 0.88 1.44 1.99 2.17

Fe 63.9 65.37 66.3 59.55 65.46 46.54 65.15 65.56 64.65 65.77 63.22 66.05 53.96 66,33 64.43 65.52 66.05 63.86 64.4 63.77 65.25 62.39 63.72 64.35 65.15 65.68 64.91 64.97

Ca

o.oor 0.015 0.01 0.013 0 0.054 0.031 0.025 0.005 0.001 0.008 0 0.019 0.008 0.029 0.012 0.007 0.002 0.007 0 0 0.002 0.006 0.005 0.09 0.023 0 0.021

Mn 1.03 0.97 0.6 0.55 0 0.72 0.65 0.74 0.81 0.61 0.97 0.6 0.55 0.62 0.46 0.77 0.68 0.94 0.81 1.06 0.56 1.07 0.99 0.73 0.62 0.7 0.84 0.67



F 0 0 0 0 0 0 0.013 0 0 0 0.018 0.013 0 0 0.039 0 0 0 0.005 0 0.018 0.032 0.023 0.027 0.026 0 0 0.093

Cr

Co

Ni

Cu

Zn

Sum 89.37 90.26 90.6 ^86.3 89.26 98.84 90.34 90.53 89.64 90.83 89.02 90.01 85.2 90.56 88.39 90.67 90.64 89.26 89.77 89.39 89.25 88.33 89.65 89.4 88.06 89.81 89.52 89.72

L k> OS OS

Page 5

Epidote, garnet and titanite analyses

Epidote analyses -

Sample

SMCA-1 SMCA-1 SMCA-1 S'MCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Na

Mg

CI ~

A!

SI

K

0 0.012 0.009 0.026 0.009 0.011 0 0 0.008 0.02

0.004 0 0 0 0.007 0 0.008 0.016 0 0 0 0.002 0.007

11.526 17.047 0 0.015 11.702 ' 17.274 6.045 '11.405 17.183 0 ' "'11.583 " 17.262 0.034 12.055 ' 16.718 0.057 10.957 16.308 0.177 8.385 14,821 0.274 13,771 6.359 0.036 9,531 16,779 0.001 10,255 16,755 0.032 9.251 16,839 10,026 16,944 0.033 0.072 10,033 17,365

SMCA-8

0.012

0.012

0.103

8,861

SMCM-6a SMCM-8a SMCM-6a SMCM-6a SMCM-6a SMCM-Sa SMCM-6a SMCM-6a

0.047 0.024 0.026 0.042 0.058 0.032 0,031 0.017

0.002 0.003 0 0.002 0,003 0 0 0,001

0.033 0.012 0,007 0,013 0 0 0,004 0

SMPW-la SMPW-1a SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la

0.273 0.153 0.161 0.094 0.056 0.153 0.044 0.101 0.166 1.343 1.273

0,053 0,004 0,003 0,022 0,038 0,008 0.033 0 0 0,011 0,023

0.484 1.163 0.994 0.282 0.184 0.446 0.799 0.747 0.724 0.408 3.713 0.015 3.575

0,01 0,009 0,002 0.024 0,02 0,019 0,025 0.018 0.007 0.019 0.033 0.004 0.013

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

0

"o "o

cpx2 Fe-ric Hbl? cpx2 Fe-ric Hbl? cpx2 Fe-ric Hbl? cpx2 Fe-ric Hbl? cpx2 Fe-ric Hbl? cpx2 Fe-ric Hbl? mt2 rim Hbl? mt2 in Hbl? mt2 in Hbl? mt2 rinn Hbl? apl rim BAD? cpxl rim tit rim

Ti

Fe

Mn

Ca

Ba

0 0,017 '0,015 0 0 0 0,02 0,002 0,072 0,037 0,028 0,052 0,134

0.024 0.046 0.285 0.13 0.06 0.035 0,074 0,701 0,195 0,108 0.413 0.424 0.118

9,123 9,506 8.723 8.673 "' 8.768 9.508 10.704 12.176 12.773 11.677 13.373 11.874 13.295

15.909 15.2 16.054 'l'5.937 14.88 14.144 10.128 8.147 15.798 15.904 15.834 15.882 15.399

"0,161 0.07a 0,441 0,402 0,405 0,35 0,124 0,085 0.179 0.074 0.117

14,866

0.012

0.276

9.653

11.373

9,894 9,305 9.658 9.854 9.805 9.711 9,692 10.106

28,411 27,836 27,681 28.531 28.154 27.658 28.348 2.891

0.496 0.575 0,459 0,417 0,555 0.522 0,494 0.348

0.025 0,036 0,04 0 0,031 0.011 0.063 0,679

0,21 0,187 0.176 0.16 0.067 0.085 0.13 0.185

8,206 4,045 7,247 2,532 1,004 6,438 1,426 3,047 7,298 10,164 10,662

6,997 0,328 0,659 13,703 25,468 0,995 0,262 0,342 0,95 1,472 1,092

17,16 24.579 25.309 21.394 16.327 24,876 7.975 36.579 25.194 24.949 25.46

7.634 0.069 0.079 0.061 0.033 0.072 0.048 0.066 0.068 0.356 0.35

2,598 0,006 0,026 0,015 0,031 0,021 0,007 0,03 0,043 0.369 0.319

3,123 3.778 4,537 4.937 3.689 3.643 2.844 3.024 3,501 3,705 0,99 6.222 1.129

8,331 8,134 9,29 10,24 15,704 17,337 18,319 17,879 15,304 13.928 8,169 1,896 9.071

16.242 16.484 16.469 15.113 13.615 13.456 15.289 14.652 14.248 12.769 22.148 11.883 22,412

1.919 0.761 0.502 0.297 0.022 0,005 0,502 0,449 0,344 0.226 3.886 0.088 1.983

1.927 1.493 1,106 1,683 0,335 0,06 0,515 0,479 0,693 0,703 0,866 0,038 1,743

F

P

0,071

O

Sum

0.024 0.017 0 0.03 0^087 0.047 0.02 0 0 0.007 0.01 0.011 0.002

0 0.076 0 0.043 0.034 0.059 0.121 0.218 0 0 0 0 0

38,707 38,949 '38,9 38,949 38,514 36,915 31,725 28,747 37.77 38.02 37.936 38.319 38.861

92.435 92.913 92.771 92.685 ' 91.61 88.441 76.614 70.77 93,089 92,849 93.895 93,649 95,423

0.193

0

0.268

32.325

77,954

5.648 6.418 5,952 5.673 5.797 5.671 5.752 6,223

0.013 0 0.001 0.042 0 0 0.019 0.003

0 0.007 0.01 0,001 0,008 0.009 0.008 0.004

0 0 0.037 0.238 0 0.11 0 0.112

43.645 42.773 42,69 43,604 43,297 42,529 43,426 15,31

88,424 87,176 86,737 88,577 87,775 86,338 87.967 35,879

14.078 21.14 14.643 7,17 2,185 16,132 9.376 7.682 14.218 9.398 8.955

0,011 8,444 8,819 6,103 6.464 8.759 26,638 4,655 8,809 7,906 7,802

0.342 0.588 0.758 0.441 0.191 0.753 0.679 0.406 0.743 0.448 0.471

0.006 0.002 0.005 0.078 0.076 0.011 0.008 0.005 0.005 0.003 0.005

0.883 0.024 0.171 0.021 0.094 0.096 0.201 0.032 0.226 0.902 0.674

38,71 40.634 42,222 43,003 45,32 41,901 23,817 48,236 42,264 43,193 43,546

96.95 100.071 100.103 94.637 97.286 100.263 70.54 101.181 99.983 100.515 100.632

5.599 6.081 6.568 6.634 9.058 9.953 9.156 9.688 11.271 14.773 2.378 7.759 6.47

8,419 9,017 9,125 10,108 10,155 9.45 7.613 8.202 9,256 9.527 6.506 15.511 6,857

0.244 0.361 0.448 0.488 0.439 0.384 0.324 0.277 0.36 0,349 0.101 0.452 0.175

0.033 0.013 0 0.016 0.021 0 0.014 0 0.032 0 2.91 0.019 0.009

0.052 0.212 0.234 0.144 0 0 0.08 0.056 0.008 0 0,446 0,008 0,126

34,875 35,434 36,758 36,894 39,001 40,078 42,048 41,363 40,001 38,168 42,69 27,938 41.759

81.258 82.94 86.033 86.86 92,243 94,831 97.528 96.834 95.749 94.575 94.836 71.833 95.322

'o,'iii

--

0 0.058 0 0 0 0.047 0.028 0 0 0 0

U)

ON

Epidote, garnet and titanite analyses

Epidote analyses Sample

-

SMPW-3 tit in SMPW-3 tit core SMPW-3 tit in SMPW-3 tit rim SMPW-3 ' mt contact SMPW-3 mt core SMPW-3 mt in SMPW-3 mt rim

Na

-

-

SMPV-1a SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b

CI

Al

K

SI

Tl

Fe

Ca

Mn

Ba

iP

0

F

Sum

0.005 0.011 0.013 0.017 0.019 0.019 0.015 0.001

1.177 1.249 1.33 1.38 1.292 1.28 1.192 1.16

8.99 9'055^ 8.931 9.063 9.389 9.679 10.027 10.262

22.449 22.664 23.044 23.313 24.07 24.72 25.766 26.324

1.92 2.173 " 2.194 2.208 2.203 2.169 2.153 2.076

1.584 1.817 1.702 1.815 "1.326 0.909 0.802 0.789

6.574 6.124 6.017 5.649 4.834 4.274 3.359 2.831

6.981 6.62 6!518" 6.455 5.884 5.489 4.951 4.62

0.152 0.116 oTii 0.155" 0.132 0.143 0.114 0.091

0.013 0.009 0.008 0.001 0 0 0.005 0

0.025 0.008 0.067 0 d.o^ 0 0.017 0.085

41.727 41.964 42.185 42.646 43.044 43.555 44.572 45.141

95.068 95.174 95.533 96.183 96.078 96.354 97.473 98.147

0.006

0.138

0.289

10.248

14.99

0.041

0.26

7.602

12.275

0.049

0.014

0.017

33.642

79.571

0.022

0.01 0.025 0.081

10.496 11.302 11.336 11.828 11.884 11.539 11.439 11.638 10.045 11.158 11.378 11.361 11.503 11.366 11.62 11.134 11.486 11.849 11.307 11.302 11.082 10.829 10.887 9.894 10.758 10.824 11.043 10.974 11.079 10.968 11.814 10.789 12.623 11.822 11.645 12.025 11.598 12.135

0.592

4.696 0.079 0.09 0.071

4.487 3.402 3.476 3.234 2.965 3.362 3.429 3.3 2.838 3.442 3.317 3.518 3.3 3.567 3.301 3.713 3.478 3.097 4.284 4.144 4.163 4.531 4.37 5.33 4.371 4.382 4.116 4.229 4.031 4.129 3.382 4.364 2.526 3.289 3.564 3.237 3.547 2.917

0.525 0.187 0.006 0.07 0.041 n.a. b.d. b.d. n.a. b.d. b.d. 0.066 n.a. b.d. b.d. 0.124 n.a. b.d. b.d. 0.096 n.a. b.d. b.d. 0.089 n.a. b.d. b.d. 0.066 n.a. b.d. b.d. 0.044 n.a. b.d. 0.64 0.052 n.a. b.d. b.d. 0.064 n.a. b.d. 0.352 0.07 n.a. b.d. b.d. 0.075 n.a. b.d. b.d. 0.096 n.a. b.d. 0.36 0.077 n.a. b.d. b.d. 0.065 n.a. b.d. 0.279 0.068 n.a. b.d. 0.29 0.062 n.a. b.d. b.d. n.a. b.d. b.d. 0.062 n.a. 0.053 b.d. 0.091 n.a. 0.038 b.d. 0.174 n.a. 0.025 b.d. n.a. b.d. b.d. n.a. b.d. b.d. n.a. b.d. b.d. n.a. b.d. b.d. n.a. b.d. b.d. 0.044 n.a. b.d. b.d. n.a. b.d. b.d. 0.042 n.a. b.d. b.d. n.a. b.d. b.d. 0.044 n.a. b.d. b.d. 0.12 n.a. 0.334 b.d. 0.052 n.a. 0.03 b.d. 0.088 n.a. b.d. b.d. 0.203 n.a. b.d. b.d. n.a. b.d. b.d. 0.083 n.a. b.d. b.d.

48.557 60.216 60.365 60.335 60.333 60.255 60.322 60.238 60.027 60.495 60.128 60.256 60.236 60.062 60.209 60.09 60.156 60.306 60.013 60.227 60.215 60.314 60.045 59.965 60.211 60.25 60.32 60.224 60.224 60.102 60.323 60.092 60.264 60.416 60.304 60.376 60.237 60.392

105.914 94.911 96.03 96.902 94.894 95.995 94.768 96.665 95.398 97.924 95.22 96.135 95.371 96.01 95.733 96.452 96.926 95.794 78.728 88.348 90.674 92.862 94.432 95.177 93.674 87.251 90.541 93.029 94.531 94.191 95.645 93.801 96.516 95.504 95.175 96.796 96.833 95.729

5.873 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

Mg

3.471 3.364 3.414 3.481 3.834 4.117 4.5 4.767

b.d. b.d. b.d. b.d. b.d.

b.d. 0.03 0.029 0.081

0.048 b.d. b.d. b.d. b.d. b.d. b.d. b.d.

b.d. 0.017 0.053 0.046 0.052 0.035 0.064 0.07 0.109 0.032

0.038 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

b.d. 0.03 0.069 0.166 0.047 b.d. b.d. b.d. 0.053 0.033 0.025 b.d. b.d. b.d. 0.04 0.058 b.d. b.d. 0.022 b.d. 0.019

27.446 15.056 b.d. 15.027 14.874 b.d. 14.975 b.d. 14.91 b.d. 14.961 b.d. 14.906 b.d. 14.423 b.d. 15.311 b.d. 14.874 b.d. 14.986 b.d. 14.988 b.d. 14.89 14.892 14.994 b.d. 14.989 b.d. 14.874 b.d. 14.462 b.d. 15.009 b.d. 15.065 b.d. 15.189 b.d. 14.95 b.d. 15.049 b.d. 15.015 b.d. 15.281 b.d. 15.087 b.d. 14.937 b.d. 14.946 b.d. 14.906 b.d. 14.827 b.d. 14.86 b.d. 14.695 b.d. 14.873 b.d. 14.786 b.d. 14.92 b.d. 14.794 b.d. 14.751 b.d.

0.028 b.d.

0.071 b.d. b.d. 1.586 0.124 0.238 0.069 0.081 0.113 0.105

0.023 0.022 b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d. b.d.

2.947 9.636 9.534 b.d. 9.446 9.394 9.571 9.535 9.627 10.36 9.328 9.564 9.524 9.533 9.446 9.446 9.523 9.399 9.666 9.763 b.d. 8.94 9.024 8.873 9.502 b.d. 9.682 b.d. 9.605 b.d. 9.05 b.d. 9.352 b.d. 9.537 9.659 b.d. 9.716 9.539 b.d. 9.726 9.339 9.507 9.548 9.071 9.694 b.d. 9.64

On

OO

Epidote, garnet and titanite analyses

Epidote analyses Sample

SMNA-4 SMNA-4 " SMNA-4 SMNA-4" SMNA-4 SMNA-4 SMNA-4 SMNA-4 SMNC? SMNC? SMNC? SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2

— —- — --- --

-Na

CI

Mg

Al

Si

K

Tl

Fe

Mn

Ca

Ba

0 0 0.012 0 0.012 0.038 0 0.02

0.002 aoi2 0.001 0 0 0 0 0.01

0.072 " 0.002 0.012 0^003 0.001 3.758 0.006 0

11.764 11.676 f 1.226 12.339 12.167 8.909 11.512 12.85

17.852 17.651 17.57 17.756 17.802 20.588 17.646 17.46

0.011 0.001 0 0.029 0.053 0.046 0.013 0

''"o.bl6 0.011 0.058 0.029 0.002 0.038 0.024 0.03

' 10.739 11.093 11.748 9^999 9.891 9.208 11.369 9.92

16.123 16.394 16.517 16.302 16.241 14.425 16.5 16.38

0.056 0.134 0.039 0.266 0.112 0.079 0.043 0.11

0.35 0 0.47

0.04 0.01 0.01

5.81 0 4.04

14.46 11.85 2.46

17.99 16.6 20.67

0.01 0.01 0.01

0.19 0.08 0.68

4.25 10.16 13.09

12.45 16.01 16.15

0 0 0.006 0.018 0.002 0.016 0.314 0.001 0.008 0 0 0.003 0.046 0.022 0.014 0.007 0.006 0 0.004 33.599 0.003

0.002 0.008 0.01 0.01 0 0.016 0.005 0 0 0.002 0.013 0.007 0.001 0.015 0.001 0.009 0.003 0 0 0.009 0.025

0.007 0.017 0.009 0 0.014 0.012 4.494 0.009 0.002 0.04 0.014 0.05 1.745 0.009 0.015 0.01 0 0.024 0.037 0.009 0.018

14.931 14.428 15.996 14.822 13.963 12.705 3.655 15.582 12.515 12.19 14.536 15.041 9.312 13.24 12.419 14.822 15.639 13.929 14.938 17.493 15.95

17.505 17.633 17.945 17.83 17.435 17.33 20.703 18.002 17.538 17.471 17.727 17.536 19.838 17.51 17.367 17.804 17.812 17.585 17.442 17.959 17.698

0 0 0.001 0 0.009 0.006 0.002 0 0.011 0.003 0 0.006 0 0 0.001 0 0 0.007 0 0.011 0

0.036 0 0.016 0.039 0.027 0.07 0.709 0.178 0.034 0.027 0.202 0.075 0.009 0.027 0 0.203 0.039 0.095 0.014 0.143 0.091

7.698 7.556 4.908 7.151 8.287 9.662 12.528 5.994 11.031 10.589 7.54 6.545 9.725 9.849 10.881 6.824 5.831 8.352 6.983 5.702 5.499

16.709 16.77 16.895 16.921 16.369 16.289 16.633 16.979 16.641 16.624 16.996 16.921 16.891 16.557 16.746 16.894 16.702 16.948 16.84 16.816 16.946

P

0.027 0 0 0 0 0.013 0

F

0

Sum

0.002 0.007 o;oo5 0.012 0.01 0.003 0.001 0.02

0 0 0 0.006 0 0.005 0 0

40.397 40.274 40.029 40.697 40.483 42.326 40.223 40.79

97.061 97.255 97.217 97.438 96.774 99.436 97.337 97.59

0.19 0.09 0.4

0.01 0.03 0.27

0.06 0.22 0.01

43.65 38.77 39.68

99.46 93.83 97.92

0.001 0.062 0.142 0.022 0.089 0.043 0.258 0.045 0.057 0.021 0.081 0.1 0.121 0.06 0.014 0.049 0.055 0.024 0.043 0.02 0.192

0.013 0.006 0.034 0 0.066 0 0.005 0.014 0.014 0.012 0.013 0 0.007 0.026 0.012 0.01 0.002 0 0 0.016 0

0.017 0.101 0 0.025 0.042 0 0 0.034 0 0.066 0 0 0 0 0.057 0 0 0 0 0.007 0.154

42.139 41.777 42.926 42.328 41.317 40.388 40.691 43.007 40.981 40.459 42.254 42.103 41.631 41.238 40.648 42.339 42.589 41.672 41.932 56.185 42.752

99.058 98.358 98.888 99.166 97.62 96.537 99.997 99.845 98.832 97.504 99.376 98.387 99.326 98.553 98.175 98.971 98.678 98.636 98.233 147.969 99.328

OJ

OS

vo

Epidote, garnet and titanite analyses

Garnet analyses Sample

SMNA-2b SMNA-2b

Na

Mg

CI

Al

K

SI

Ti

Ca

Fe

Mn

Ba

P

o

F

Sum

SMNA-2b

0,02 0.04 0 0.02

0 0.02 0 0

0.23 0 0.22 0.22^

2.38 0.69 2.37 2.43

15.56 14.46 15.45 15.83

0.01 0.26 0 0

3,27 21.42 1 3.27 2.4

16.58 0.92 16.56 16,67

22.81 1^^ 22,81 22,91

0.29 0 0.27 0,3

0.02 0.03 0.02 0.01

0 0,1 0 0

36.16 39.52 35.99 35.97

97.33 96.99 96.94 96.76

SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2

0.002 0.005 0.001 0.004 0 0 0 0 0.003 0.002 0.005 0.013 0.01

0.01 0 0 0 0 0 0 0.003 0.02 0 0 0 0

0 0.017 0 0 0 0 0 0 0 0 0 0 0

8.236 8.413 7.724 7.563 6.58 5.882 5.417 5.648 6.153 6.197 6.284 7.942 6.708

17.704 17.926 17.693 17.698 17.756 17.567 17.468 17.479 17.58 17.538 17.45 17.536 17.592

0.005 0,265 0.006 0.003 0 0 0 0 0,011 0 0 0 0,004

0 0.043 0 0 0.009 0.005j 0.007 0.002 0 0.016 0 0 0

8.409 8.397 9.04 9.524 10.9 12.305 13.123 12.784 11.699 11,855 11,733 8,874 10.982

25.587 24.594 25.573 25.403 25.128 25.028 24.979 24,953 24.936 25,133 24.921 25.191 25.25

0.171 0.124 0,172 0.115 0.094 0.087 0.124 0.113 0.086 0.064 0.148 0.172 0.122

0.01 0,016 0.002 0 0.013 0.01 0,008 0 0.002 0.02 0 0,014 0

0 0.018 0.061 0 0.095 0 0.051 0 0,102 0 0 0.122 0

40.183 40.277 39.857 39.797 39.247 38.805 38.481 38.597 38.793 38.98 38,827 39,665 39,277

100.317 100.095 100.129 100.107 99.822 99.689 99.658 99.579 99.385 99.805 99.368 99.529 99.945

SMNA-2b

•-J

O

Epidote, garnet and titanite analyses

Titanite analyses Sample

-

-Na

Mg

CI

SMCA-1 SMCA-1 SMCAT SMCA-1 SMCA-1 SMCA-1 SMCA-1

0,013 0

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5

Al

SI

K

Ti

Fe

Ca

Mn

Ba

P

0

F

Sum

1.319 13.83 0.684 13.724 1.258 14.252 0.95 ' 13.787" 1.388 14.057 1.582 14.031 0.549 12.012

0,048 0.015 0.006 " 0.019 0.089 0.024 0.007

20,206 21,65 20.152 20^885 20.554 19.097 20.101

0,893 19.317 0,711 19.308 0.976 " 19.889 19.207 1.132 0,865 19.736 1,589 19.588 2,24 16.567

0.038 0.129 0 0.022 0.06 0.039 0.274

0.016 0 0 0.003 ^ 0.022 0.086 0.018

0.376 0,112 0.628 0.288 0.541 0.621 0

38.285 38.614 38.78 38.457 38.944 38.296 34.968

94.341 94.947 95.971 94.861 96.258 94.98 86,751

0.002 0 0.004 0 0 0 0 0 0 0 0 0

0.706 1.335 1.53 0.549 0.785 0.474 0.6 0.458 0.624 0.802 1.089 0.539

14,179 14.025 14.04 13.908 14.121 14.043 13.994 13.889 14.181 12.95 13.903 13.963

0.001 0.092 0.05 0.141 0.05 0,189 0.009 0.009 0.253 0.074 0.051 0.011

21,482 19,858 19,509 22,023 22,694 22,317 21,263 21,927 22,985 23,031 21,415 22,306

1,827 2,132 1,942 1,252 0,928 1,108 1,324 1,108 0,492 3,003 1,358 1.257

19.733 19,946 20.085 19.897 20.002 19.762 18.823 19.255 19.899 18.688 20.077 20,04

0.014 0.02 0.013 0.013 0.006 0.018 0 0.068 0.003 0.283 0.044 0.035

0,004 0,027 0,016 0,004 0,009 0 0 0 0 0,031 0,014 0,006

0 0 0 0.269 0 0 0 0 0 0 0 0.148

39.544 39.067 38.996 39.274 40,221 39,602 38.581 38.906 40.212 39.31 39.557 39.611

97,509 96,511 96,208 97,33 98,817 97,571 94,603 95.625 98,67 98.221 97.543 97.926

0 0.022 0.006

0 0 0

5.431 5.297 5.367

14.619 14.408 14.388

0.041 0,041 0.02

13,931 14,373 14,191

0,778 0,908 0,769

20,519 20,462 20,619

0 0 0

0,012 0,01 0,002

3.161 3.237 3.199

37.904 37.811 37.763

96.406 96.569 96,337

0.017 0 0.01 0 0.021 0

0 0.016 0.005 0 0.011 0

0 0 0 0.123 0 0

1.618 1.352 1.566 1.567 0.639 0.722

14.426 14.572 14.386 14,43 14.388 14.187

0,01 0,016 0,008 0,012 0,012 0,002

20,493 21.454 20.498 20.371 21.442 21.753

0,637 0,695 0,781 0,961 0,878 0,959

20,375 20,206 20,249 20,068 20,189 20,157

0.025 0.032 0.033 0.057 0.065 0,07

0,007 0 0,007 0,007 0.003 0.014

0 0 0.09 0.359 0 0.993

39.907 40.412 39.769 39.688 39.627 39.281

97.515 98,755 97,402 97,643 97,275 98.138

SMCM-9a

0.006

0.006

0

0.046

14.332

0,007

23.443

1,239

20,1

0.048

0.009

0.046

40.433

99.769

SMCM-lla SMCM-lla SMCM-lla SMCM-lla SMCM-lla

0.026 0.027 0.007 0.017 0.007

0.004 0.001 0 0 0

0 0 0 0 0

0.457 0.397 0.548 0.289 0.78

13.765 9.822 13,956 14,02 14,041

0 0,059 0.013 0.009 0.02

21,659 24.857 21.537 21.896 21.701

0.801 5.957 1.201 1.038 1.226

19,521 13,056 19,717 19,763 19,988

0,061 5,144 0,155 0,125 0,107

0 0,029 0,009 0 0,007

0 0 0 0.088 0.176

38.607 36.625 39.053 39.052 39.491

94.901 95.974 96.196

SMPW-la SMPW-LA

0.023 0.027 0.019 0.031 0.015 0.019 0.012 0.009 0.045 0.018

0.006 0 0 0.011 0 0 0.007 0 0.004 0

0.01 0.009 0.014 0.008 0.014 0.007 0.01 0.06 0.006 0.005

0.761 0.604 0.588 0.59 0.673 0.533 0.629 0.991 0.404 0.451

14,205 14,152 14.045 14,075 14,151 14.083 14.129 14.477 11.258 14.455

0.075 0.026 0.014 0.005 0.025 0.016 0.175 0.042 0 0,046

21.685 21.452 21.72 21.655 21.819 21.753 21.757 20.688 21.544 22,316

1.359 2.008 1.545 1.447 1.61 1.465 1.573 2,278 1.251 1.639

19,326 18,991 19.02 19.089 19.158 18.775 18.995 19.95 21.449 20.452

0,107 0.122 0.12 0.1 0.129 0.123 0.13 0.049 0.123 0.106

0,017 0,007 0,022 0,024 0,025 0,026 0,005 0.008 0,021 1.954

0.17 0.281 0.14 0.085 0.159 0.198 0.222 0.569 0.119 0.825

39.534 39.212 39.15 39.138 39.495 39.048 39.315 39.887 36.579 42.984

97.277 96.89 96.397 96.259 97.275 96.047 96.959 99.008 92.801 105.251

0.097

0.002

6

0.01 0.001

0 0

SMCA-5a

0.004 0.005 0 0 0 0.058 0.009 0.003 0.02 0.015 0.009 0.01

0.013 0.004 0.023 0 0.001 0 0 0.002 0.001 0.034 0.026 0

SMCM-6a SMCM-6a SMCM-6a

0.01 0 0.013

SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a SMCM-7a

oToie

0.01 0 0.017 0.014

o' o o

0 0 0.012 0.004

Zn

SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la SMPW-la

0.054

0 0 0 0 0 0 0 0 0 0

96.297

97.544

Epidote, garnet and titanite analyses

Titanite analyses Sample

SMPW-3 SMPW-3

Na



SMPV-1a SMPV-1a SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-1a SMNA-2a SMNA-2b SMNA-2b SMNA-2b SMNA-2b? SMNA-2b? SMNA-2b?

Mg

C[

Ai

K

Tl

Fe

Ca

Mn

Ba

F

P

0

Sum

0.024 0.523

0.015 0

0 0.035

0.917j 1.437

13.389 14.827

0.012 20.725 0.436 " 19.48i

1.223 1.752

19.171 1 17.396

0.145 0.652

0.047 0.019

0.011 0.212

38.026 39.052

93.705 95^^822

0.05 0.22 0.022 0.041 0.033 0.024 0.036

0.069 0.07 0.068 0.107 0.033 0.087 0.121

0.09 0.132 0.23 0.047 0.04 0.019 0.022

2.535 2.945 2.547 2.289 1.258 1.47 2.082

12.541 13.37 12.584 14.632 6.58 6.047 9.022

0.06 0.05 0.067 0.092 0.069 0.055 0.066

25.122 22.759 24.989 20.231 42.199 42.517 33.513

0.261 0.269 0.294 0.162 0.354 0.384 0.623

16.832 17.37 16.701 19.84 7.909 8.236 12.609

0 0 0.025 0.015 0 0 0

0.014 0.036 0.037 0.026 0.404 0.009 0.01

0.951 0.808 1.037 0.794 0.62 0.681 1.008

39.812 39.933 39.825 39.933 40.372 39.736 39.335

98.337 97.962 98.426 98.209 99.871 99.265 98.447

0.001 0.003 0.028 b.d. b.d. b.d. b.d. b.d. 0 0 0.02 0 0.02 0 0.01 0.02 0

1.219 6.395 0.353 6.564 0.55 0.46 0.34

14.404 13.011 b.d. 12.687 b.d. 12.69 b.d. 13.89 13.98 13.95

0

0.01 0.03 0.01

21.759 5.929 11.611 5.996 21.59 21.96 21.3

1.15 0.258 0.434 0.326 0.98 0.93 1.04

20.32 0.021 0.249 0.002 11.778 b.d. n.a. b.d. 12.512 b.d. n.a. 0.016 12.182 b.d. n.a. b.d. 19.44 0.08 0 19.87 0.06 0 19.63 0.02 0.03

0.324 6.202 0.498 4.863 0.22 0.25 0.07

40.51 56.396 61.87 57.336 38.8 39.19 38.59

99.964 101.549 97.563 98.847 95.57 96.76 95.02

0.008 0.01

0.405 0.21

40.876 39.68

100.979 97.48

0.002 b.d. b.d. b.d.

SI

SMNA-4 SMNA-4

0.007 0

0.006 0

0 0

0.944 0.57

14.443 14.4

0.011 0.11

22.611 22.04

1.024 0.66

20.372 19.78

0.034 0

SMNC?

0.02

0.02

0

0.5

13.93

0.04

22.32

1

19.58

0

0.04

0

39.39

96.83

SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2 SMNC-2

0 0.012 0.016 0 0.002 0.016 0.016 0.002 0.023 0

0.008 0 0 0 0.016 0 0.005 0 0.003 0.001

0 0 0 0 0 0 0 0 0 0

2.842 1.42 0.46 0.507 0.654 0.531 0.424 0.393 0.381 0.404

14.499 14.217 13.965 14.053 14.007 13.953 13.736 13.852 13.743 13.68

0 0.015 0 0.002 0.015 0.009 0 0 0.002 0

19.348 21.272 22.636 22.486 22.582 22.563 23.43 22.989 22.95 22.65

0.648 0.856 0.861 1.01 0.852 0.782 0.753 0.725 0.722 0.748

20.72 20.243 19.925 19.858 20.112 20.181 20.061 19.919 20.108 19.913

0.075 0.022 0 0 0.013 0 0.036 0 0.017 0.03

0 0 0.048 0.029 0.04 0.027 0.038 0.039 0.043 0.045

0.364 0.12 0.066 0.12 0.361 0.373 0.198 0.121 0.275 0.242

40.297 39.962 39.683 39.688 39.804 39.609 39.884 39.649 39.516 39.207

98.801 98.139 97.66 97.753 98.458 98.044 98.581 97,689 97.783 96.92

SMRN-1 SMRN-1

0.032 0

0 0.007

0 0

0.642 0.7

13.86 14.319

0 0

21.715 20.739

1.197 1.44

19.588 19.707

0.103 0.159

0.026 0.025

0.13 0.575

39.052 38.906

96.345 96.577

0.238

Chlorite analyses and other alteration minerals

Chlorite analyses Sample

SMCA-1 SMCA-1 SMCA-1 " SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1 SMCA-1

Na

CI

0.112 0.046 0.178

Mg

Al

Si

K

Fe

Ti

Ca

Mn

Ba

P

F

0

Sum

0.008 0 0.015 0.023 0.015 0.002 0.023 0.006 0.004 0.015 0.019 0.023 0.004 0.007 0.013 0.002 0.018 0.113 0.032 0.003 0.143 0.081 0.111 0.025 0.05 0.238 0.077 0.069 0.019

0.014 0.019 0.016 ' 0.012 " aoi6 0 0 0 0.004 0.017 0.015 0.013 0.013 0.002 0.018 0.018 0.001 0.015 0 0.009 0.009 0.037 0.003 0 0.017 0.006 0.015 0.005 0.006 0.016 0.01 0.008 0.013

12.387 13.781 11.863 12704 12.374 12,45 12.894 13.103 12.901 12.325 12.691 12.843 12.889 13.339 13.286 13.247 12.736 12.391 12.028 12.23 11.46 11.658 12.053 10.022 8.989 10.526 10.511 10.576 11.188 10.507 10.675 11.827 11.955

9.486 10.57 9.144 9.059 9.391 9.207 7.566 7.796 10.265 9.997 10.147 10.05 10.234 7.966 8.023 8.107 10.066 10.151 10.007 9.919 9.673 7.475 7.545 8.894 8.923 8.724 9.063 9.065 9.612 9.053 9.624 10.192 9.446

12.817 12.529 12.443 13.668 13.254 13.186 14.586 14.842 13.348 13.052 13.178 13.384 12.932 14712 14.8 14.836 13.438 13.219 13.125 13.059 12.971 15.087 13.808 11.661 11.509 12.108 12.072 12.762 14.102 11.694 13.136 13.134 13.888

0.04 0.012 " 6:013 0.485, 0.036 0.067 0.068 0.04 0.063 0 0.011 0.034 0.016 0.051 0.118 0.302 0.025 0.019 0.01 0.002 0.018 0.471 0.083 0.003 0.064 0.058 0.04 0.04 0.104 0.05 0.015 0.046 0.065

0.015 0.006 0 0.153 0.089 0.049 0.017 0.028 0.03 0.051 0.04 0 0.017 0.038 0.062 0.15 0.028 0.017 0.025 0.019 0.074 0.15 0.072 0 0.025 0.027 0.004 0.023 0.059 0 0.027 0.038 0.056

12.93 13.053 12.617 12.891 13.36 13.51 12.201 12.605 13.303 14.121 13.548 13.305 12.609 12.679 13.367 13.021 13.882 14.662 14.808 13.842 15.664 9.085 9.921 12.617 13.581 12.37 12.148 12.295 12.071 11.214 13.761 12.316 13.511

0.112 0.077 0.134 0.047 0.025 0.018 0.182 0.136 0.032 0.041 0.022 0.045 0.051 0.152 0.112 0.117 0.068 0.051 0.025 0.038 0.04 0.237 0.108 0.009 0.113 0.066 0.104 0.061 0.089 0.176 0.094 0.083 0.023

0.334 0.367 0.368 0.495 0.478 0.492 0.553 0.621 0.323 0.345 0.334 0.331 0.309 0.6 0.572 0.442 0.283 0.411 0.351 0.33 0.556 0.602 0.31 0.471 0.353 0.307 0.371 0.328 0.364 0.368 0.389 0.384 0.297

0.008 0 0.037 0.005 0.012 0 0 0 0 0 0.002 0.004 0 0 0 0 0 0.012 0.016 0.02 0 0.019 0.013 0 0.033 0.017 0.004 0.007 0.012 0.02 0.013 0 0.003

2.397 1.053 2.351 0.304 0.11 0.157 0.153 0.07 0.328 0.082 0.109 0 0.138 0.209 0.069 0.111 0.068 0.122 0.014 0.068 0.128 0 0 0.496 0 0 0 0 0 0 0 0 0.279

34.096 84.748 36.201 " 87714 33.014 82.178 35.935 85777 35.612 84.765 35.41 84.546 83.767 35.532 36.323 85.587 36.648 87.26 36.035 86.068 36.373 86.493 36.582 86.597 36 85.212 36.45 86.213 36.825 87.271 87.234 36.86 36.732 87.331 87.644 36.567 36.167 86.589 85.375 35.837 35.595 86.206 34.637 79.571 33.446 77.394 31.343 75.519 31.124 74.874 32.224 76.514 32.418 76.861 33.249 78.436 35.675 83.332 31.799 75.135 3471 82.531 35.547 83.644 36.004 85.559

SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5 SMCA-5

0.219 1.799 2.85 3.041 2.95 2.84

0.216 0.056 0 0.001 0.008 0.018

6.348 8.735 9.227 9.737 9.864 9.294

5.454 5.899 5.981 6.923 7.112 6.761

17.057 19.476 20.492 18.756 18.894 17.707

4.022 1.148 0.126 0.075 0.106 0.15

4.556 0.242 0.035 0.033 0.042 0.07

8.685 12.01 11.435 10.791 11.141 10.772

3.922 0.603 1.583 0.303 0.242 0.396

0.057 0.085 0.122 0.095 0.081 0.116

0.006 0 0 0 0.006 0

0 0.231 0 0 0.625 0

36.437 37.806 39.727 38.273 38.478 36.647

86.979 88.09 91.578 88.028 89.549 84.771

SMCM-6a SMCM-6a SMCM-6a

0.085 0.107 0.044

0.209 0.024 0.01

8.624 10.852 11.723

7.729 9.614 10.007

15.33 13.841 13.206

2.933 0.139 0.022

4.051 0.074 0.032

9.98 13.959 14.804

4.011 0.105 0.08

0.217 0.428 0.471

0.015 0.01 0.028

0.728 0.091 0.153

37.544 35.715 36.086

91.456 84.959 86.666

SMCM-9a SMCM-9a SMCM-9a SMCM-9a SMCM-9a

0.006 0.002 0 0 0.009

0 0 0.011 0.004 0.003

11.555 12.234 11.639 12.228 12.044

7.747 8.857 9.737 9.472 9.801

14.713 14.036 13.119 13.635 13.272

0.02 0.018 0 0.09 0

0.142 0.099 0.04 0.038 0.064

14.727 15.181 15.275 14.424 14.333

0.253 0.103 0.052 0.066 0.065

0.177 0.247 0.287 0.247 0.215

0.015 0.015 0.022 0.002 0.005

0.146 0.228 0.09 0.188 0.139

35.706 36.383 35.776 36.21 35.962

85.265 87.414 86.092 86.615 85.934



-

oms r

Zn

0.058 0.011 0.044 0.011 0.022

•-J u>

Chlorite analyses and other alteration minerals

Chlorite analyses Sample

SMCM-9a SMCM-9a SMCM-9a "SMbM-9a SMCM-9a

Na

CI

Al

Mg

Si

K

d.oY4 " 0.015 0.009 0 0

0.001 0.009 1 0.028 0.009 0.005

12.004 12.466 1 11.655 11.826 12.281

9.367 ~ 7.503 7.212 9.654 9.025

13.334 15.11 157363 13.287 14.23

SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1 SMPG-1

0 0 0 0 0 0 0 0

0.012 0 0.002 0 0.009 0 0 0.005

13.063 11.97 11.45 11.62 11.778 11.927 12.898 12.46

9.138 10.598 10.54 10.903 10.65 10.976 10.927 11.006

13.91 13.123 13.623 13.782 13.576 13.419 12.963 13.066

SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2 SMPG-2

0 0 0 0 0 0 0 0

0.007 0 0.004 0.001 0 0 0 0.004

13.226 13.41 13.146 12.635 12.559 12.758 12.449 12.926

10.376 10.36 10.218 9.686 10.199 10.084 10.253 9.885

SMPG-3 SMPG-3 SMPG-3 SMPG-3

0.007 0.003 0.014 0.017

0.159 0.104 0.009 0

13.615 14.192 13.254 13.407

SMPG-5 SMPG-5

0.018 0.015

0.077 0.004

SMPW-la SMPW-la SMPW-la

0.002 0.007 0.008

SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3 SMPW-3

2.425 2.766 3.046 1.444 0.887 0.979 1.594 2.998 4.305 0.021 0.378 0.018 0

Tl

Fe

Mn

Ca

Ba

0,03 14.78 0.057 14.226 0.104 14.348 a04"6 '15.437 0.068 15.071

0.041 0.34 0.402 0.051^

O.V

0.317 0.242 0.197 0.311 0.3'

0.013 0.016 0.007 0 0.009 0.007 0.008 0.003

0.014 0.055 0,058 0.069 0.04 0.063 0.047 0.051

14,313 15.601 14.785 13.954 14.999 13.916 13.891 14.861

0.062 0.016 0.023 0.023 0.021 0.025 0.015 0.021

13.51 13.259 13,847 13.659 13.328 13.341 13.452 14.058

0.061 0.014 0.015 0.064 0.024 0.002 0.024 0.057

0.056 0.028 0.051 0.069 0.066 0.03 0,039 0.01

13.089 13.097 13.538 13.312 14.071 14.207 14.692 13.466

10.221 10.633 11,035 10.184

14.315 13.227 13.147 13.502

0.455 0.006 0.005 0.026

0.111 0.016 0.005 0.078

11.871 12.069

9.37 9.393

13.651 14.361

0.01 0.012

0.004 0.002 0.004

10.256 8.498 8.514

9.937 8.351 9.564

13.233 18.105 12.766

0.026 0.016 0.03 0.034 0.022 0.034 0.029 0.023 0.011 0.017 0.025 0.017 0.006

3.619 3.499 3.125 5.886 6.349 5.951 5.901 3.681 1,258 7.906 7.173 6.519 8.824

14.236 13.762 13.581 12.004 11.316 10.939 10.923 11.883 16.027 8.134 3.407 11.721 10.349

18.119 18.676 19.929 13.915 12.759 12.526 13.682 18.019 18.195 14.499 17.452 12.556 13.732

r

0.007 0.051 " 0.057 0.001 0.013

P

0.067 b.114 0.082 0.075 0.069

F

O

Sum

0.003 0 0.021 0.017 b

0.159 0.211 0.134 6A 03 0.09

35.749 857873 36.369 " 86.713 35.988 85.6 36.071 86.888 36.796 ' ' 88.048

0.076 0.107 0.075 0.129 0.127 0.081 0.066 0.139

0.002 0.011 0.013 0.007 0.003 0.009 0 0.002

0.059 0.042 0.038 0.061 0.01 0.04 0.02 0.05

36.733 36.814 36.753 37.146 37.065 36.975 37.012 37.217

87.395 88.353 87.367 87.694 88.287 87.438 87.847 88.881

0.046 0.035 0.062 0.08 0.032 0.023 0.041 0.08

0.136 0,264 0.073 0.059 0.268 0.053 0.032 0.054

0.003 0 0 0 0 0.001 0.006 0.005

0.236 0.287 0.337 0.298 0.117 0.219 0.296 0.43

37.184 37.009 37.477 36.413 36.693 36.68 36.912 37.243

87.93 87.763 88.768 86.276 87.357 87.398 88.196 88.218

8.795 10.478 11.887 9.144

0.132 0.04 0.021 0.112

0.071 0.125 0.051 0.054

0 0.045 0 0.013

0.004 0.002 0 0.016

0.327 0.172 0.241 0.295

37.127 36.942 36.954 36.029

85.339 85.985 86.623 82.877

0.111 0.048

17.135 10.78

0.087 0.183

0.207 0.026

0.012 0

0.011 0.004

0.111 0.304

36.8 35.871

89.471 83.07

0.027 0.027 0.049

0.01 0 0

19.523 16.806 22.506

0.07 0.079 0.028

0.558 0.543 0.806

0 0 0

0.015 0,007 0,008

0.044 0.09 0.057

36.479 38.668 35.371

90.156 91.182 89.683

2.215 2.116 2.401 2.244 2.323 2.317 1,848 2.453 0.753 1.789 0.285 0.172 0.353

0.947 0.889 0.834 2.886 3.285 3.23 1.222 0.85 0.112 0.626 0.077 0.011 0.106

5.913 5.979 5.162 10.322 11.022 10.726 8.688 5.705 1.551 12.122 8.514 14.474 15.119

1.872 2.062 1.703 1.397 2.359 2.489 4.255 3.042 4.912 0.81 13.944 0.219 0.186

0.237 0.202 0.218 0.293 0.394 0.371 0.384 0.222 0.13 0.237 0.78 0.551 0.532

0.233 0.104 0.109 0.021 0.018 0.006 0.014 0.009 0.009 0.011 0.016 0.017 0

0.104 0.128 0.217 0.292 0.316 0.379 0.281 0.273 0.008 0.49 0.357 0.013 0.154

40.38 40.486 41.217 36.793 35.859 34.907 35.131 38.441 39.99 33.421 35.975 33.479 35.298

90.326 90.685 91.572 87.531 86.909 84.854 83.952 87.599 87.261 80.083 88.383 79.767 84.659

u>

Chlorite analyses and other alteration minerals

Chlorite analyses

-

Sample

Na

SMNA-2b" SMNA-2b SMNA-2b" SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b SMNA-2b

0,04 b.d. 9.404 0.025 b.d. 9.953 0,035 0.029 9.249 b.d. ^ I 7 0.025 b.d. b.d. b.d. b.d. b.d. 9.868 b.d. 9.689 b.d. b.d. b.d. 9.617 0.039 b.d. 10.117

SMNC-1

-

CI

0.06

Ai

Mg

0.01

6.56

Si

9637 9.166 " 8.484 0.095 0.078 9.222 9.824 9,762 7.354 13.06

k

12.'76 12.464 13.293 _ 0.469 b.d. 0.085 b.d. 12.962 12.242 12.31 14.462 12.9

Tl

Fe

o.del b.d.

^ 0.479 0.102 0.423 0.712 19.126 0.16 0.157 b.d. 0.033 0.062 0.048 b.d. 0.632 0.877 0.28

0

Mn

Ca

8.99 8.013 7.M8 16.467 49.391 8.726 9.228 9.3 5.306 17.94

Ba

O.I44In.a. 0.105 0.847 0.136 n.a. 0.91 0.129 n.a. 0.693 3.095 n.a. n.a. 0.096 b.d. 0.112 0.131 n.a. 0.145 0.165 n.a. 0.115 0.156 n.a. 1.706 0.068 n.a. 0.81

0.15

P

F

0

Sum

0

b.d. b.d. b.d. 0.325 0.399 b.d. _ 0.099 b.d. b.d. b.d." b.d. b.d. b.d. b.d. b.d. b.d. b.d. 0.306 0.15

58.694 58.482 58.689 59.829 50.116 58.76 58.599 58.591 59.12

88.757 88,855 ^8^741 96,804 90,44 88.304 88.009 87.007 89.973

36.16

88.11

Chlorite analyses and other alteration minerals

Possible clay analyses Sample

Na

Mg

CI

A!

SI

Ti

K

Fe

Ca

Mn

Ba

P

F

0

Sum

SMPG-1

0.096

0.002

0

11.176

31.151

0.253

0

0.244

2.305

0

0.013

0

46.523

91.763

SMPG-2

0.097

0

0

11.178

31.55

0.204

0.03

0.204

2.233

0

0.002

0

46.934

92.432

SMPW-3 SMPW-3

0.109 0.032

0.05 0.046

2.415 0.018

31.575 27.34

11.134 24.648

0.013 0.038

0.009 0.021

2.223 0.323

6.505 0.303

0.218 0.025

0.02 0.01

0.064 0.008

45.692 52.666

100.027 105.478

SMPV-la SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-la SMPV-1a SMPV-1a SMPV-1a SMPV-la SMPV-1a SMPV-1a

0.92 0.286 0.95 3.56 0.451 3.516 1.331 3.043 2.813 2.74 3.264 3.131

0.004 0.011 0.021 0.04 0.051 0.019 0.041 0.072 0.027 0.021 0.018 0.025

0.015 0.017 0.011 0.057 0.034 0.061 0.743 0.018 0.017 0.19 0.012 0.014

28.546 27.27 26.516 27.051 20.24 27.434 29.528 29.118 27.237 28.85 28.12 24.244

15.078 15.979 16.128 17.334 19.92 17.221 13.489 15.545 15.698 14.801 16.159 17.949

3.373 6.161 4.592 0.069 7.051 0.134 1.956 0.085 0.482 0.049 0.073 1.097

0.022 0.027 0.029 0 0 0 0 0.035 0.024 0.015 0 0

0.111 0.153 0.088 0.121 0.183 0.195 2.699 0.106 0.112 0.36 0.116 0.12

0.35 0.292 0.29 0.44 0.243 0.367 0.417 0.406 0.346 0.393 0.302 0.302

0 0.001 0 0.017 0.016 0.027 0.017 0 0.001 0.003 0.001 0

0.008 0 0.003 0.01 0.006 0.01 0 0.007 0.001 0.009 0.003 0.015

0 0 0 0.016 0 0 0.008 0 0 0.032 0 0.024

43.786 44.009 43.398 45.315 42.472 45.534 43.918 44.906 43.27 43.879 44.736 43.497

92.213 94.206 92.026 94.03 90.667 94.518 94.147 93.338 89.928 91.342 92.804 90.418

SMRN-1

0.044

0.014

0.067

19.579

0.926

0.154

1.043

39.986

0.082

0.301

0.008

0

30.841

93.045

Chlorite analyses and other alteration minerals

Possible carbonate analyses Sample

Na

Mg

CI

Al

Si

Fe

Ti

K

Mn

Ca

Zn

P

F

Sum

0

SMCM-9a

0.003

0.009

0

0.004

0.079

0.003

0.023

0.198

43.02

0.125

0

0.006

0

17.384

60.854

SMPW-1a SMPW-ta SMPW-la

0.013 0 0.031

0.003 0.003 0.004

0.007 0.018 0.125

0.003 0.003 0.027

0.018 0.009 0.063

0.016 0.019 0.008

0.027 0.02 0.005

0.09 0.104 0.439

41.528 44.678 43.886

0.23 0.327 1.594

0 0.021 0

0.011 0.012 0.013

0.055 0 0

16.738 18.019 18.319

58.739 63.233 64.513

378

References Ague, J.J. and Brimhall, G.H. (1988b): Regional Variations in Bulk Chemistry, Mineralogy, and Compositions of Mafic and Accesory Minerals in the Batholiths of California; Geological Society of America Bulletin, vol. 100, pp. 891-911. Aguirre-Di'az G.J. (1988): Eocene and Younger Volcanism on the Eastern Flank of the Sierra Madre Occidental, Nazas, Durango, Mexico; unpublished M.Sc. thesis, p. 179. Aguirre-Diaz, G.J. and McDowell, F.W. (1991): The Tectonic Section at Nazas, Durango, Mexico, and the Possibility of Widespread Eocene Volcanism within the Sierra Madre Occidental; Journal of Geophysical Research, Section B, Solid Eeirth and Planets, vol. 96, no. 8, pp. 13373-13388. Anderson, B.D.; Cordoba, D.A. and Lee, K. (1988): Resumen de la Geologia de la Hoja San Juan de Guadalupe, Estados de Durango y Coahuila; Carta Geologica de Mexico Serie de 1:100,000, no. 21, Hoja San Juan de Guadalupe 13R-1(8), Instituto de Geologia, Universidad Nacional Autonoma de Mexico, p. 19. Anderson, J.L. (1989): Proterozoic Anorogenic Granites of the Southwestern United States; In: Jenney, J.P. and Rej'nolds, S.J. [Eds.]: Geologic Evolution of Arizona; Arizona Geological Society Digest 17, Arizona Geological Society, Tucson, Arizona, pp. 211-238. Anderson, J.L. (1996): Status of Thermobarometry in Granitic Batholiths; Transactions of the Royal Society of Edinburgh: Earth Sciences, vol. 87, pp. 125-138. Anderson, J.L. and Smith, D.R. (1995):The Effects of Temperature and f02 on the Al-inhomblende Barometer; American Mineralogist, vol. 80, pp. 549-559. Anderson, T.H.; McKee, J.W. and Jones, N.W. (1990): Jurassic (?) Melange in Northcentral Mexico; Geological Society of America Abstracts with Programs, vol. 22, no. 3, p. 3. Anderson, T..H.; McKee, J.W. and Jones, N.W. (1991): A Northwest Trending, Jurassic Fold Nappe, Northernmost Zacatecas, Mexico. Tectonics, vol. 10, p. 383-401. Anonymous (1975a): Carta Geologica 1:250,000 - Juan Aldama, Hoja G-13 12; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975b): Carta Geologica 1:250,000 - Concepcion del Oro, Hoja G-14 10; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet.

379

Anonymous (1975c): Carta Geologica 1:50,000 - Concepcion del Oro, Hoja G-14 C-62; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975d): Carta Geologica 1:50,000 - Tanquecillos, Hoja G-14 C-72; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975e): Carta Geologica 1:50,000 - El Salvador, Hoja G-14 C-64; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975f): Carta Geologica 1:50,000 - El Salado, Hoja G-14 C-74; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975g): Carta Geologica 1:50,000 - Presa de San Pedro, Hoja G-14 C-63; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous (1975h): Carta Geologica 1:50,000 - Melchor Ocampo, Hoja G-14 C-62?; Comision de Estudios del Territorio Nacional (CETENAL), Mexico, 1 sheet. Anonymous, (1997a): (http://www.mexmin.com/mingov97.asp)' Anonymous, (1997b): Canarc Resources Corp.; (http://www.imdex.com/z_Canarc.htm) Anonymous, (2003): Penasquito Scoping Study with Cost Estimates; Western Silver Corporation internal report, M3 Enngineering and Technology, http://westemsilvercorp.com/projects_penasqutio_scopingstudy.htm, p. 29. Arriaga Melendez, H. (1973): Levantamiento Geologico-Geoquimico de Detalle del Area "El Taray", Municipio de Mazapil, Zacatecas; Consejo de Recursos Minerales, Departamento de Geoquimica, pp. 476-490. Arriaga Melendez, H. (1977): Estudio Geologico-Geoquimico del Area Rocamontes, Area de El Rabioso y Rocamontes; Consejo de Recursos Minerales, Seminario sobre Exploracion Geologico-Minera, no. 6, pp. 413-431. Banks, (1976): Halogen Contents of Igneous Minerals as Indicators of Magmatic Evolution of Rocks Associated with the Ray Porphyry Copper Deposit, Arizona; U.S. Geological Survey, Journal of Research, vol. 4, no. 1, pp. 91-117. Barrera, T. (1927): Informe Geologico del Criadero y Mina de Santa Rosa Pertenecientes a la Santa Rosa Mining Co., Distrito de Mazapil, Estado de Zacatecas; Institute Geologico de Mexico, Boletm 46, pp. 47-72.

' The link has since disappeared, however the information corresponding to the area of Cerro Prieto has been updated and is available at http://www.coremisgm.gob.mx/servicios/proyasigna/cerroprieto.pdf.

380

Bartolini, C. (1998): Stratigraphy, Geochronology, Geochemistry, and Tectonic Setting of the Nazas Formation, North-central Mexico. The University of Texas at El Paso, unpublished Ph.D. thesis, p. 557. Blevin, P.L.; Allen, C.M.; Bryant, C.J. and Chappell, B.W. (1995): A Metallogenic Template for Eastern Australia Based on Granite Source and Evolution; In: Brown, M. and Piccoli, P.M. [Eds.]: The Origin of Granites and Related Rocks - Third Hutton Symposium Abstracts; U.S. Geological Survey Circular 1129, pp. 25-26. Blevin, P.L.; Chappell, B.W. and Allen, C.M. (1996): Intrusive Metallogenic Provinces in Eastern Australia Based on Granite Source and Composition; Transactions of the Royal Society of Edinburgh, vol. 87, pp. 281-290. Blickwede, J.F. (1981): Petrology and Stratigraphy of Triassic(?) "Nazas Formation", Sierra de San Julian, Zacatecas, Mexico. American Association of Petroleum Geologists Bulletin, vol. 65, p. 1012. Bouse, R.M. (1995): Pb Isotopic Compositions of Ore Deposits and Their Host Rocks in Arizona: Implications for the Crustal Inheritance of Metals; The University of Arizona unpublished Ph.D. thesis, Tucson, Arizona, p. 205. Burckhardt, C. (1906c): Geologic de la Sierra de Mazapil et Santa Rosa. X Congres Geologique International, Guide Excursion du Nord, no. 26, p. 41 (plus one correlation table, three maps and a separate section with 14 photographic plates and corresponding overlays). Buseck, P.R. (1961): Contact Metasomatic Ores at Concepcion del Oro, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 56, no. 7, pp. 1336. Buseck, P.R. (1962): Contact Metasomatic Ddeposits at Concepcion del Oro,Mexico; Tem Piute, Nevada; and Silver Bell, Arizona; University of Columbia unpublished Ph.D. thesis, pp. 254. Buseck, P.R. (1966): Contact Metasomatic Ores at Concepcion del Oro, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 61, no. 1, pp. 97-136. Cameron, K.L. and Cameron, M. (1985): Trace Element, ^^Sr/^^Sr, and 143Nd/144Nd Composition of Cenozoic Orogenic Dacites from Baja California, Northwestern Mexico, and Adjacent Western Texas: Evidence for the Predominance of a Subcrustal Component; Contributions to Mineralogy and Petrology, vol. 91, pp. 111.

381

Cameron, K.L. and Hanson, G.N. (1978): Rare Earth Element Evidence Concerning the Origin of the Voluminous Mid-Tertiary Ignimbrites and Related Rocks, Sierra Madre Occidental, Mexico; Geochimica et Cosmochimica Acta, vol. 46, pp. 14891504. Cameron, K.L.; Cameron, M.; Bagby, W.C.; Moll, E.J. and Drake, R.E. (1980): Petrologic Characteristics of Mid-Tertiary Volcanic Suites, Chihuahua, Mexico; Geology, vol. 8, pp. 87-91. Campa, M.F. and Coney, P., (1983): Tectono-stratigraphic terranes and mineral resource distributions in Mexico; Canadian Journal of Earth Sciences, vol. 20, pp. 10401051. Candela, P.A. (1995): Optimal Conditions for Porphyry Copp[er Ore Genesis Based on Experimental, Theoretical and Field Observations: An Overview; In: Brown, M. and Piccoli, P.M. [Eds.]: The Origin of Granites and Related Rocks - Third Hutton Symposium Abstracts; U.S. Geological Survey Circular 1129, pp. 31-32. Centeno-Garcia, E. (1994): Tectonic Evolution of the Guerrero Terrane, Western Mexico.The University of Arizona; Tucson, Arizona, unpublished Ph.D. thesis, p. 220. Centeno-Garcia, E.; Rmz, J.; Coney, P.J.; Patchett, P.J. and Ortega Gutierrez, F. (1993): Guerrero Terrane of Mexico: Its Role in the Southern Cordillera from New Geochemical Data; Geology, vol. 21, pp. 419-422. Chappell, B.W. (1997): Compositional Variation Within Granite Suites of the Lachlan Fold Belt: Its Cauese and Implications for the Physical State of Granite Magma; Transactions of the Royal Society of Edinburgh, Earth Sciences, vol. 88, pp. 159170. Chappell, B.W., and White, A.J.R. (1974): Two Contrasting Granite Types; Pacific Geology, vol. 8, pp. 173-174. Chryssoulis, S. and Wilkinson, N. (1983): High Silver Content of Fluid Inclusions in Quartz from Guadalcazar Granite, San Luis Potosi, Mexico: A Contribution to OreGenesis Theory; Economic Geology, vol. 78, pp. 302-318. Chuchla, R.J. (1981): Reconnaissance Geology of the Sierra Rica Area, Chihuahua, Mexico; University of Texas, Austin, unpublished M.A. thesis, p.199. Clark, K.F. and De la Fuente L., F.E. (1978): Distribution of Mineralization in Time and Space in Chihuahua, Mexico; Mineralium Deposita, vol. 13, pp. 27-49.

382

Clark, K.F.; Damon, P.E.; Shafiqullah, M. and Schutter, S.R. (1978): Continuity of Magmatism in Northern Mexico, 130 m.y.b.p. to Present; Geological Society of America Abstracts with Programs, vol. 10, p. 381. Clark, K.F.; Damon, P.E.; Schutter, S.R. and Shafiqullah, M. (1979): Magmatismo en el Norte de Mexico en Relacion a los Yacimientos Metaliferos; Asociacion de Ingenieros Mineros, Metalurgistas y Geologos de Mexico, Memoria Tecnica 13, pp. 8-57, Clark, K. F.; Damon, P.E.; Shafiquillah, M.; Ponce, B.F. and Cardenas, D. (1981): Seccion Geoldgica-Estructural a Ttraves de la Parte Sur de la Sierra Madre Occidental, entre Fresnillo y la Costa de Nayarit; Asociacion de Ingenieros Mineros, Metalurgistas y Geologos de Mexico, Memoria Tecnica 14, pp. 69-99. Clark, K.F.; Foster, C.T and Damon, P.E. (1982): Cenozoic Mineral Deposits and Subduction-Related Magmatic Arcs in Mexico; Geological Society of America Bulletin, vol. 93, pp. 533-544. Clark, K.F.; Goodell, P.C.; Hoffer, J.M. and Bustamante Y., M.A. (Leaders) (1988): Guidebook for the 1998 Field Conference; El Paso Geological Society; Road Logs; In: Clark, K.F.; Goodell, P.C. and Hoffer, J.M. [Eds.]: Stratigraphy, Tectonics and Resources of Parts of Sierra Madre Occidental Province, Mexico; El Paso Geological Society, Guidebook 21, pp. 1-118. Clarke, D. (1987-1993): NewPet: A Geochemical Data-Handling Package (Shareware); Centre for Earth Resources Research, Department of Earth Sciences, Memorial University of Newfoundland. Claj'ton, R.N. (1955): Variations in Oxygen Isotope Abundances in Rock Minerals; California Institute of Technology unpublished Ph.D. thesis, Los Angeles, California, p. 89. Coney, P.J. (1992): The Lachlan Belt of Eastern Australia and Circum-Pacific Tectonic Evolution; In: Fergusson, C.L. and Glen, R.A. [Eds.]: The Paleozoic Eastern Margin of Gondwanaland; Tectonics of the Lachlan Fold Belt, Southeastern AustraUa and Related Orogens; Tectonophysics, vol. 214, no. 1-4, pp. 1-25. Coney, P.J. and Reynolds, S.J. (1977): Cordilleran Benioff Zones; Nature, vol. 270, pp. 403-405. Cordoba, D.A. (1964): Geology of the Apizolaya Quadrangle (East Half), Northeastern Zacatecas, Mexico; University of Texas, Austin, unpublished M.A. thesis, p. 111. Creasey, S.C. (1966): Hydrothermal Alteration; In: Titley, S.R. and Hicks, C.L. [Eds.]:

383

Geology of the Prophyry Copper Deposits, Southwestern North America; The University of Arizona Press, pp. 51-74. Damon, P.E. (1978): Mineralization in Time and Space in Northwestern Mexico and Southwestern United States; Simposio sobre la Geologi'a y Potencial Minero del Estado de Sonora, Resumenes, vol. 1, pp. 41-44. Damon, P.E.; Shafiqullah, M. and Clark, K.F. (1983b): Geochronology of the Porphyry Copper Deposits and Related Mineralization of Mexico; In: Dawson, K.M. [Prefacer]: Symposium on Metallogeny and Tectonics of the North American Cordillera; Canadian Journal of Earth Sciences, vol. 20, no. 6, pp. 1052-1071. De Cserna, Z. (1956): Tectonica de la Sierra Madre Oriental de Mexico entre Torreon y Monterrey; XX Congreso Geologico Intemacional, p. 87. De la Fuente Garcia, J. (1979): Estudio Geologico Minero de la Mina San Miguel, en el Ejido San Rafael, Mazapil, Zac.; Consejo de Recursos Minerales, Internal Report, p. 13. Deer, W.A.; Howie, R.A. and Zussman, J. (1963): Rock-Forming Minerals; Vol. 2A: Single-Chain Silicates; Longmans, London, p. 668. DePaolo, D.J. (1988): Age Dependence of the Composition of Continental Crust: Evidence from Nd Isotopic Variations in Granitic Rocks; Earth and Planetary Science Letters, vol. 90, pp. 263-271. Dickinson, W.R. and Lawton, T.F. (2001): Tectonic Setting and Sandstone Petrofacies of the Bisbee Basin (USA-Mexico); Journal of South American Earth Sciences, vol. 14, pp. 475-504. Dodge, F.C.W.; Moore, J.G.; Papike, J.J. and May, R.E. (1968): Hornblendes from Granitic Rocks of the Central Sierra Nevada Batholith, California; Journal of Petrology, vol. 9, pp. 378-410. Dodge, F.C.W.; Smith, V.C. and Mays, R.E. (1969): Biotites from Granitic Rocks of the Central Sierra Nevada Batholith, California; Journal of Petrology, vol. 10, part 2, pp. 250-271. Faure, G. (1986): Principles of Isotope Geology (Second Edition); John Wiley and Sons, New York, p. 589. Frost T.P. and Mahood, G.A. (1987): Field, Chemical, and Rheological Constraints on Mafic-Felsic Magma Interaction in the Lamarck Granodiorite, Sierra Nevada, California; Geological Society of America Bulletin, vol. 99, p. 272.

384

Frost, T.P. and Mattinson, J.M. (1988): Late Cretaceous U-Pb Age of a Mafic Intrusion from the Eastern Sierra Nevada, California; IsochronAVest, no. 51, p. 15. Frost, T.P. and Mattinson, J.M. (1993): Age and Tectonic Implications of Mid-Mesozoic Calc-Alkalic Hornblende-Rich Mafic Plutonic Rocks of the Eastern Sierra Nevada, California; IsochronAVest, no. 59, pp. 11-16. Garcia Calderon, J. (1976): Investigacion Hidrogeologica de la Region de "El Cardito", Zacatecas; Boletin del Institute de Geologia, Universidad Nacional Autonoma de Mexico, no. 98, p.101. Gilmer, A.L.; Clark, K.F.; Conde C., J.; Hernandez C., 1. Figueroa S., J.I. and Porter, E.W. (1988): Sierra de Seinta Maria, Velardena Mining District, Durango, Mexico; Economic Geology, vol. 83, 1802-1829. Goldhammer, R.K. (1999): Mesozoic Sequence Stratigraphy and Paleogeographic Evolution of Northeast Mexico. In: Bartolini, C.; Wilson, J.L. and Lawton, T.L. [Eds.]: Mesozoic Sedimentary and Tectonic History of North-Central Mexico. Geological Society of America, Special Paper 340, pp. 1-58. Goldstein, S.L.; O'Nions, R.K. and Hamilton, R.K. (1984): A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems; Earth and Planetary Science Letters, vol. 70, pp. 221-236. Graf, A. (1997): Geology and Porphyry-Style Mineralization of the Cerro de la Gloria Stock Associated with High-T, Carbonate-Hosted Zn-Cu-Ag(-Pb) Skarn Mineralization, San Martm District, Zacatecas, Mexico; The University of Arizona, unpublished M.Sc. thesis, p. 55. Gregory, J.L. (1981): Volcanic Stratigraphy and K-Ar Ages of the Manuel Benavides Area, Northeastern Chihuahua, Mexico, and Correlations with the Trans-Pecos Texas Volcanic Province; University of Texas, Austin, unpublished M.A. thesis, p. 78. Gunderson, R.; Cameron, K.L. and Cameron, M. (1986): Mid-Cenozoic High-K CalcAlkalic and Alkalic Volcanism in Eastern Chihuahua, Mexico: Geology and Geochemistry of the Benavides-Pozos Area; Geological Society of America Bulletin, vol. 97, pp. 737-753. Gunow, A.J. (1978): The Geochemistry of Fluorine-Rich Micas at the Henderson Molybdenite Deposit; University of Colorado, unpublished M.Sc. thesis. Boulder, Colorado, p. 287. Gunow, A.J.; Ludington, S. and Munoz, J.L. (1980): Fluorine in Micas from the

385

Henderson Molybdenite Deposit, Colorado; Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 75, pp. 1127-1137. Hammarstrom, J.M. and Zen, E.a., (1986): Aluminum in Hornblende; an Empirical Igneous Geobarometer; American Mineralogist, vol. 71, pp. 1297-1313. Hamblock, J.M. (2002): Lithology, Alteration and Mineralization in the Eastern Mexican Alkaline Province; The University of Arizona, unpublished M.Sc. thesis, p. 133. Harris, N.B.W.; Pearce, J.A and Tindle, A.G. (1986): Geochemical Characteristics of Collision Zone Magmatism; In: Coward, M.P. and Reis, A.C. [Eds.]: Collision Tectonics; Geological Society of London, Special Publication, no. 19, pp. 67-81. Hawkesworth, C.J.; Rogers, N.W.; Van Calsteren, P.W.C. and Menzies, M.A. (1984): Mantle enrichment processes; Nature, vol. 311; no. 5984, pp. 331-335. Kutsukake, T. and Yoshida, M. (1991): Ryoke Granitoids and Metamorphic Rocks in the Kinki District, Southwest Japan; In: Kato, J. and Noro, H. [Eds.]: Metamorphic Belts and Related Plutonism in the Japanese Islands; 29'*' International Geological Congress, Field Trip Guidebook, vol. 5, pp. 273-283. Haynes, F.M. and Kesler, S.E. (1988): Compositions and Sources of Mineralizing Fluids for Chimney and Manto Limestone-Replacement Ores in Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 83, no. 8, pp. 1985-1992. Henry, C.D. and Price, J.G. (1984): Variations in Caldera Development in the MidTertiary Volcanic Field of Trans-Pecos, Texas; Journal of Geophysical Research, Section B, Solid Earth and Planets, vol. 89, no. 10, pp. 8765-8786. Henry, C.D. and Price, J.G. (1986): Early Basin and Range Development in Trans-Pecos Texas and Adjacent Chihuahua: Magmatism and Orientation, Timing, and Style of Extension; Journal of Geophysical Research, Section B, Solid Earth and Planets, vol. 91, no. 6, pp. 6213-6224. Henry, C.D.; Price, J.G. and James, E.W. (1991): Mid-Cenozoic Stress Evolution and Magmatism in the Southern Cordillera, Texas and Mexico; Transition from Continental Arc to Intraplate Extension; In: Anonymous: Mid-Tertiary Cordilleran Magmatism; Plate Convergence Versus Intraplate Processes; Journal of Geophysical Research, Section B, Solid Earth and Planets, vol. 96; no. 8, pp. 13,545-13,560. Hernandez Perez, I. (1977): Informe del Levantamiento de Prueba con el Metodo Electromagnetico Turam en el Area de Rocamontes, Municipio de Saltillo, Coah.;

386

Consejo de Recursos Minerales, Internal Report, p. 6. Hiroi, Y. (1983): Progressive Metamorphism of the Unazuki Pelitic Schists in the Hida Terrane, Central Japan; Contributions to Mieralogy and Petrology, vol. 82, pp. 334350. Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H. and Sisson, V.B. (1987): Confirmation of the Empirical Correlation of A1 in hornblende with Pressure of Solidification of Calc-alkaline Plutons; American Mineralogist, vol. 72, pp. 231239. Huspeni, J.R.; Kesler, S.E.; Ruiz, J.; Tuta, Z.; Sutter, J.F. and Jones, L.M. (1984): Petrology and Geochemistry of Rhyolites Associated with Tin Mineralization in Northern Mexico; Economic Geology, vol. 79, pp. 87-105. Imlay, R.W. (1938): Studies of the Mexican Geosyncline. Geological Society of America Bulletin, vol. 49, no. 11, pp. 1651-1694. Irvine, T.N. and Baragar, W.R.A. (1971): A Guide to the Chemical Classification of the Common Volcanic Rocks; Canadian Journal of Earth Sciences, vol. 8, pp. 523-548. Ishihara, S. (1981): The Granitoid Series and Mineralization; In: Economic Geology 75th Anniversary Volume, Economic Geology and the Bulletin of the Society of Economic Geologists, pp. 458-484. Jacobo-Albarran, J. (1986): El Basamento del Distrito de Poza Rica y su Implicacion en la Generacion de Hidrocarburos; Revista del Instituto Mexicano del Petroleo, vol. 18; no. 1, pp. 5-24. Jacobs, D.C. and Parry, W.T. (1976): A Comparison of the Geochemistry of Biotite from Some Basin and Range Stocks; Economic Geology, vol. 71, pp. 1029-1035. Jacobs, D.C. (1976): Geochemistry Of Biotite In The Santa Rita And Hanover-Fierro Stocks, Central Mining District, Grant County, New Mexico, USA; Monash University unpublished Ph.D. thesis, Clayton, Victoria, p. unknown. Johnson, M.C. and Rutherford, M.J. (1989): Experimental Calibration of the Aluminumin-hornblende Geobarometer with Application to Long Valley Caldera, CA, Volcanic Rocks; Geology, vol. 17, pp. 837-841. Johnson, J.W.; Oelkers, E.H. and Helgeson, H.C. (1992): SUPCRT 92: A Software Pakcage for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5000 bars and 0° to 1000°C; Computers in Geosciences, vol. 19, pp. 899-947.

387

Jones, N.W.; McKee, J.W.; Marquez D., B.; Tovar, J.; Long, L.E. and Laudon, T.S. (1984); The Mesozoic La Mula Island, Coahuila, Mexico; Geological Society of America Bulletin, vol. 95, pp. 1226-1241. Jones, N.W.; McKee, J.W.; Anderson, T.H., and Silver, L.T., (1990); Nazas Formation; A Remnant of the Jurassic Arc of Western North America in North-Central Mexico. Geological Society of America, Abstracts with Programs, vol. 22, no.7, p. A327. Jones, N.W.; McKee, J.W.; Anderson, T.H. and Silver, L.T. (1995); Jurassic Volcanic Rocks in Northeastern Mexico; A Possible Remnant of a Cordilleran Magmatic Arc; In; Jacques-Ayala, C.; Gonzalez-Leon, C.M. and Roldan-Quintana, J. [Eds.]; Studies on the Mesozoic of Sonora and Adjacent Areas; Geological Society of America Special Paper 301, pp. 179-190. Keith, S.B. (1978); Paleosubduction Geometries Inferred from Cretaceous and Tertiary Magmatic Patterning in Southwestern North America; Geology, vol. 6, pp. 516-521. Keith, S.B. (1981); Geochemical, Geochronological and Plate Tectonic Setting of Cretaceous through Early Cenozoic Mineral Deposits in Northern Mexico. Geological Society of America, Abstracts with Programs, vol. 13, no. 2 , p.63. Keith, J.D.; Van Middelaar, W.; Clark, A.H. and Hodgson,C.J. (1989): Granitoid Textures, Compositions, and Volatile Fugacities Associated with the Formation of Tungsten-Dominated Skam Deposits; In; Whitney, J.A. and Naldrett, A.J. [Eds.]; Ore Deposition Associated with Magmas; Reviews in Economic Geology, no. 4, pp. 235-250. Keith, J.D.; Christiansen, E.H.; Maughan, D.T. and Waite, K.A. (1998); The Role of Mafic Alkaline Magmas in Felsic Porphyry-Cu and Mo Systems; In; Lentz, D.R. [Ed.]; Mineralized Intrusion-Related Skarn Systems; Mineralogical Association of Canada, Short Course Series, vol. 26, pp. 211-243. Keller, P.C.; Bockoven, N.T. and McDowell, F.W. (1982); Tertiary Volcanic History of the Sierra del Gallego Area, Chihuahua, Mexico; Geological Society of America Bulletin, vol. 93, pp. 303-314. Kesler, S.E.; Issigonis, M.J.; Brownlow, A.H.; Damon, P.E.; Moore, W.J.; Northcote, K.E. and Preto, V.A.G. (1975); Geochemistry of Biotites from Mineralized and Barren Intrusive Systems; Economic Geology, vol. 70, pp. 559-567. Krieger, P. (1940); Bomite-Klaprotholite Relations at Concepcion del Oro, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 35, no. 6, pp. 687-697.

388

Kuno, H. (1966); Lateral Variation of Basaltic Magma Type Across Continental Margins and Island Arcs; Bulletin of Volcanology, vol. 29, pp. 195-222. Lang, J.R. (1991); Isotopic and Geochemical Charaberistics of Laramide Igneous Rocks in Arizona; The University of Arizona unpublished Ph.D. thesis, Tucson, Arizona, p. 201. Lang, J.R. (1998): Halogen Composition of Igneous Apatite and Biotite in Jurassic and Laramide Intrusions, Arizona; Differences between Productive and Barren Plutons; Geological Society of America, Abstracts with Programs, vol. 30, no. 7, pp. 75-76. Lang, B.; Steinitz, G.; Sawkins, F.J. and Simmons, S.F. (1988); K-Ar Age Studies in the Fresnillo Silver District, Zacatecas; Economic Geology, vol. 83; no. 8, pp. 16421646. Le Maitre, R.W.; Bateman, P.; Dudek, A.; Keller, J.; Lameyre Le Bas, M.J.; Sabine, P.A.; Schmid, R.; Sorensen, H.; Streckeisen, A.; Woolley, A.R. and Zanettin, B. (1989); A Classification of Igneous Rocks and Glossary of Terms; Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks; Oxford, Blackwell Scientific, p. 193. Leake, B.E. (1978); Nomenclature of Amphiboles; American Mineralogist, vol. 63, pp. 1023-1052. Lee, K. (1963); Geology of the San Juan de Guadalupe Quadrangle (East Half), Durango and Coahuila, Mexico; Louisiana State University unpublished M.Sc. thesis. Baton Rouge, Louisiana, p. 65. Lee Moreno, J.L. and Ramos Duran, J.R. (1958?); Informe Sobre el Reconocimiento Geologico-Geoquimico en el Cerro Pedregoso y Cerro Gordo en los Limites de los Estados de Coahuila, Nuevo Leon, San Luis Potosi y Zacatecas. Consejo de Recursos Minerales, Internal Report, p. 7. Lameyre, J. and Bowden, P. (1982); Plutonic Rock Types Series; Discrimination of Various Granitoid Series and Related Rocks; In; Brousse, R. and Lemeyre, J. [Eds.]; Magmatology; Journal of Volcanology and Geothermal Research, Vol. 14, no. 1-2, pp. 169-186. Longoria, J.F. (1990); Stratigraphic Events in the Mesozoic of Northeast Mexico; Their Relation to the Dynamics of the Gulf of Mexico; Geological Society of America Abstracts with Programs, vol. 22; no. 7, p. 185 Lopez, R.; Cameron, K.L. and Jones, N.W. (1997); Evidence from U-Pb Zircon Ages for the Grenvillian Reworking of 1.8 Ga Crust South of the Ouachita Suture in the

389

Coahuila Terrane, Northern Mexico: Eos, Transactions of the American Geophysical Union, vol. 78, no. 46, p. 785. Lopez, R.; Jones, N.W.; Cameron, K.L. and Hernandez, C. (1996): The Pre-Jurassic Evolution of the Coahuila Terrane, Mexico; No Evidence of a Major Change in Magmatic Source During the Course of the Ouachita Orogeny; Eos, Transactions of the American Geophysical Union, vol. 77; no. 46, Suppl., pp. 759-760. Lopez Ramos, E. (1972): Estudio del Basamento Igneo y Metamorfico de las Zonas Norte y Poza Rica (Entre Nautla, Ver. y Jimenez, Tamps.); Boletm de la Asociacion Mexicana de Geologos Petroleros, vol. 24, no. 7-9, pp. 267-323. Mapes Vazquez, E.; Zamora Montero, S. and Geronimo Godoy, J. (1964): Geologia y Yacimientos Minerales del Distrito de Concepcion del Oro y Avalos, Zacatecas. Consejo de Recursos Naturales No Renovables, Publicacion lOE, p. 133. Martinez Ramos, A. (1986): Informe Geologico-Minero Preliminar del Area El Pedregoso, Municipio de Saltillo, Coahuila; Consejo de Recursos Minerales, Internal Report, p. 13. Martinez Ramos, C.J. (1988): Estudio Geologico-Minero Regional del Area de Matehuapil, Municipios de El Salvador, Zacatecas y Saltillo, Coahuila; Consejo de Recursos Minerales, Internal Report, p. 120. Martinez Ramos, C.J. and Rivera Martinez, J.C. (1992): Smtesis de la Exploracion Geologico-Minera Realizada por el CRM en la Reserva Minera Nacional Alicia, Localizada en los Municipios de Concepcion del Oro, Zac. y Saltillo, Coah. Durante el Perfodo de Septiembre de 1977 a Febrero de 1991; Consejo de Recursos Minerales, Internal Report, p. 38. Martinez Ramos, C.J.; Moreno Tovar, R. and Vega Cruz, B. (1986): Informe GeologicoMinero, Primera Etapa, Reservas Mineras Nacionales Alicia, Municipios de Concepcion del Oro, Zac. y Saltillo, Coahuila; Consejo de Recursos Minerales, Internal Report, p. 60. Martinez Rodriguez, L. (1979): Evaluacion Preliminar de la Perforacion de Diamante en el Area Rocamontes. Consejo de Recursos Minerales, Internal Report, pp. unknown. Martinez Vacio, P. (1973): Levantamiento Geoquimico Regional de los Alrededores del Distrito Concepcion del Oro, Zac., Zona Oriente; Consejo de Recursos Natuales No Renovables, Internal Report, p. 42. Matsuhisa, Y.; Goldsmith, J.R. and Clayton, R.N. (1979): Oxygen Isotopic Fractionation

390

in the System Quartz-Albite-Anorthite-Water; Geochimica et Cosmochimica Act, vol. 43, pp. 1131-1140. Mauger, R.L. (1981): Mid-Eocene to Oligocene Bimodal Volcanism in Central Chihuahua, Mexico; Geological Society of America, Abstracts with Programs, vol. 13, no. 2, pp. 94. Mauger, R.L. (1983): The Geology and Volcanic Stratigraphy of the Sierra Sacramento Block, Near Chihuahua City, Chihuahua, Mexico; In: Clark, K.F. and Goodell, P.C. [Eds.]: Geology and Mineral Resources of North-Central Chihuahua; El Paso Geological Society Guidebooks, vol. 14, pp. 137-156. Mazdab, F.K. (2002): The Distribution of Trace Elements in Iron Sulfides and Associated Chlorine-Bearing Silicates; The University of Arizona unpublished Ph.D. thesis, Tucson, Arizona, p. 795. McDowell, F.W. (1977): The Sierra Madre Occidental Volcanic Province of Western Mexico: Age and Major-Element Characteristics; Eos, Transactions of the American Geophysical Union, vol. 58; no. 12, pp. 1246. McDowell, F.W. and Keizer, R.P. (1977): Timing of Mid-Tertiary Volcanism in the Sierra Madre Occidental Between Durango City and Mazatlan, Mexico; Geological Society of America Bulletin, vol. 88, pp. 1479-1487. McDowell, F.W.; Wark, D.A. and Aguirre-Diaz, G.J. (1990): The Tertiary Ignimbrite Flare-Up in Western Mexico; Geological Society of America Abstracts with Programs, vol. 22, no. 3, p. 66. McKee, J.W.; Jones, N.W.; Laudon, T.S. and Marquez, B. (1979): Cretaceous Transgression of the Coahuila Peninsula, Potrero de la Mula and Sierra del Fuste, Coahuila, Mexico; American Association of Petroleum Geologists Bulletin, vol. 63, pp. 495-496. McKee, J.W.; Jones, N.W. and Anderson, T.H. (1988): Las Delicias Basin: A Record of Late Paleozoic Arc Volcanism in Northeastern Mexico; Geology, vol. 16, pp. 3740. McKee, J.W.; Jones, N.W. and Long, L.E. (1990): Stratigraphy and Provenance of Strata Along the San Marcos Fault, Central Coahuila, Mexico; Geological Society of America Bulletin, vol. 102, pp. 593-614. McKee, J.W.; Jones, N.W. and Anderson, T.H. (1999): Late Paleozoic and Early Mesozoic History of the Las Delicias Terrane, Coahuila, Mexico; In: Bartolini, C.; Wilson, J.L. and Lawton, T.F. [Eds.]: Mesozoic Sedimentary and Tectonic History

391

of North-cCentral Mexico; Geological Society of America, Special Paper 340, pp. 161-189. Megaw, P.K.M. (1998): Tectonic Localization and Controls on High-temperature, Carbonate-hosted Ag-Pb-Zn Deposits of Mexico; In: Kisvarsanyi, G. and Grant, S.K. [Eds.]: North American Conference on Tectonic Control of Ore Deposits and the Vertical and Horizontal Extent of Ore Systems; Proceedings Volume, University of Missouri, Rolla Press, pp. 92-103. Megaw, P.K.M.; Ruiz, J. and Titley, S.R. (1988): High-temperature Carbonate-hosted Ag-Pb-Zn(Cu) Deposits of Northern Mexico; Economic Geology, vol. 83, pp. 18561885. Meyer, C. and Henley, J.J. (1967): Wall Rock Alteration; In: Barnes, H.L. [Ed.]: Geochemistry of Hydrothermal Ore Deposits; Holt, Rinehart and Winston, New York, pp. 166-232. Moore, W.J. and Czamanske, G.K. (1973): Compositions of Biotites from Unaltered and Altered Monzonitic Rocks in the Bingham Mining District, Utah; Economic Geology, vol. 68, pp. 269-280. Morimoto, N. (1988): Nomenclature of Pyroxenes, Mineralogical Magazine, vol. 52, pp. 535-550. Munoz, J.L. (1984): F-OH and Cl-OH Exchange in Micas with Applications to Hydrothermal Ore Deposits; In: Bailey, S.W. [Ed.]: Micas; Mineralogical Society of America, Reviews in Mineralogy, vol. 13, pp. 357-467. Murillo Muneton, G. and Torres Vargas, R. (1987): Mapa Petrogenetico y Radiometrico de la Republica Mexicana; Instituto Mexicano del Petroleo, Proyecto C-2010, Subdireccion de Tecnologia de Exploracion, Internal Report, p. 256. Nakajima, T.; Ishiwatari, A.; Sano, S.; Kunugiza, K.; Okamura, M.; Sohma, T.; Kano, T. and Hayasaka, Y. (1992): Geotraverse Across the Southwest Japan Arc: An Overview of Tectonic Setting of Southwest Japan; In: Kato, J. and Noro, H. [Eds.]: Metamorphic Belts and Related Plutonism in the Japanese Islands; 29"^ International Geological Congress, Field Trip Guidebook, vol. 5, pp. 171-253. Nakajima, T. (1996): Cretaceous Granitoids in SW Japan and Their Bearing on Crustforming Process in the Eastern Eurasian Margin; Transactions of the Royal Society of Edinburgh, Earth Sciences, vol. 87, pp. 183-191. Nakano, T. (1998): Pyroxene Gechemistry as an Indicator for Skarn Metallogenesis in Japan; In: Lentz, D.R. [Ed.]: Mineralized Intrusion-related Skarn Systems;

392

Mineralogical Association of Canada, Short Course Series, vol. 26, chapter 5, pp. 147-167. Norrish, K. and Hutton, J.T. (1969): An accurate X-ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples; Geochimica et Cosmochimica Acta, vol. 33, p. 431-453. O'Neil, J.R.; Shaw, S.E. and Flood, R.H. (1977): Oxygen and Hydrogen Isotope Compositions as Indicators of Granite Gneiss in the New England Batholith, Australia; Contributions to Mineralogy and Petrology, vol. 62, pp. 313-328. Ohmoto, H.; Hart, S.R. and Holland, H.D. (1966); Studies in the Providencia Area, Mexico; [Part] 2, K-Ar and Rb-Sr Ages of Intrusive Rocks and Hydrothermal Minerals. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 61, no. 7, pp. 1205-1213. Pantoja-Alor, J. and Rincon-Orta, C. (1967): Edad de Tres Rocas intrusitas de la Parte Centro-Septentrional de Mexico; Estudios de Geocronometrfa y Mineralogia, Parte I, Institute de Geologia, Boletm 82, pp. 7-24. Patchett, P.J. and Ruiz, J. (1987): Nd Isotopic Ages of Crust Formation and Metamorphism in the Precambrian fo Eastern and Southern Mexico; Contributions to Mineralogy and Petrology, vol. 96, pp. 523-528. Pearce, J.A.; Harris, N.B.W. and Tindle, A.G. (1984): Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks; Journal of Petrology, vol. 25, pp. 956-983. Puchner, H.F. and Holland, H.D. (1966): Studies in the Providencia Area, Mexico; [Part 3], Neutron Activation Analyses of Fluid Inclusions from Noche Buena. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 61, no. 8, pp. 1390-1398. Roegge, J.S.; Logsdon, M.J.; Young, H.S.; Barr, H.B.; Borcsik, M. and Holland, H.D. (1974): Halogens in Apatites from the Providencia Area, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 69, no. 2, pp. 229-240. Rogers, C.L.; Tavera Amezcua, E.; Ojeda Rivera, J.; De Cserna, Z. and Van Vloten, R. (1961): Marine Phosphorites of North-Central Mexico; U.S. Geological Survey Professional Paper, pp. D222-D224. Rogers, C.L.; De Cserna, Z.; Tavera, E. and Ulloa, S. (1956): General Geology and Phosphate Deposits of Concepcion del Oro District, Zacatecas, Mexico. U.S.

393

Geological Survey Bulletin 1037-A, p. 102. Rogers, C.L.; De Csema, Z.; Tavera, E. and Ulloa, S. (1961): Reconocimiento Geologico y Depositos de Fosfatos del Norte de Zacatecas y Areas Adyacentes en Coahuila, Nuevo Leon y San Luis Potosi. Consejo Nacional de Recursos Naturales No Renovables, Boletm 56, p. 325. Rogers, C.L.; Van Vloten, R.; Ojeda Rivera, J.; Tavera, E., and De Cserna, Z., (1963): Plutonic Rocks of Northern Zacatecas and Adjacent Areas, Mexico. U.S. Geological Survey Professional Paper 475-C, pp. C7-C10. Rogers, C.L.; Van Vloten, R.; Ojeda Rivera, J.; Tavera Amezcua, E. and De Cserna, Z. (1964): Rocas Plutonicas del Norte de Zacatecas y Areas Adyacentes, Mexico; Geologia y Metalurgia, vol. 2; no. 9, pp. 56-63. Rollog, M.E. (2003): Oxygen, Strontium, and Neodymium Isotopic Patterns in Granitoids of the North American Cordillera; The LFniversity of Arizona unpublished M.Sc. thesis, Tucson, Arizona, p. 89. Rubin, J.N. and Kyle, J.R. (1984): Mineralogy and Geochemistry of the San Martin Skarn Deposit, Zacatecas, Mexico; Economic Geology, vol. 83, pp. 1782-1801. Rueda Gaxiola, J.; Lopez Ocampo, E.; Duenas, M.A.; Minero, M.; Uribe, G. and Guerrero, M. (1991): Las Fosas de Huizachal-Peregrina y de Huayacocotla; Dos Partes de un Graben Relacionado con el Origen del Golfo de Mexico; In: Rabinovich Kogan, R. and Carreno, M.L. [Eds.]: Memoria de la Convencion sobre la Evolucion Geologica de Mexico; Instituto de Geologia, Universidad Nacional Autonoma de Mexico, pp. 189-192. Rueda Gaxiola, J. (1992): El Alogrupo Los San Pedro (=Alogrupo La Boca) del Noreste de Mexico y sus Relaciones Tectono-Estratigragicas y Paleogeograficas; Boletm de la Sociedad Geologica Mexicana, vol. 51, no. 1-2, pp. 11-14. *Rueda Gaxiola et al., (1997): The Origin in the Gulf of Mexico and Its Mexican Petroleum Sub-Basins, Based on Redbed Palynostratigraphy; Geological Society of America Abstracts with Programs, vol. 29; no. 2, p. 45. Ruiz, J. (1983): Geology and Geochemistry of Fluorite Ore Deposits and Associated Rocks in Northern Mexico; The University of Michigan unpublished Ph.D. thesis, Ann Arbor, Michigan, p. 202. Ruiz, J. (1988): Petrology, Distribution and Origin of Rhyolite Associated with Tin Mineralization in the Sierra Madre Occidental, Mexico; In: Taylor, R.P. and Strong, D.F. [Eds.]: Recent Advances in the Geology of Granite-Related Mineral Deposits;

394

Canadian Institute of Mining and Metallurgy, Special Volume, vol. 39, pp. 322-330. Ruiz, J.; Kesler, S.E.; Jones, L.M. and Sutter, J.F. (1980): Geology and Geochemistry of the Las Cuevas Fluorite Deposit, San Luis Potosi, Mexico; Economic Geology, vol. 75, pp. 1200-1209. Rui'z, J.; Patchett, P.J. and Ortega-Gutierrez, F. (1988): Proterozoic and Phanerozoic Basement Terranes of Mexico from Nd Isotopic Studies; Geological Society of America Bulletin, vol. 100, pp. 274-281. Rye, R.O. (1965): The Carbon, Hydrogen, and Oxygen Isotopic Composition of the Hydrothermal Fluids Responsible for the Lead-Zinc Deposits at Providencia, Zacatecas, Mexico. Ph.D. Thesis, unpublished, Princeton University, p. 108. Rye, R.O. (1966): The Carbon, Hydrogen, and Oxygen Isotopic Composition of the Hydrothermal Fluids Responsible for the Lead-Zinc Deposits at Providencia, Zacatecas, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 61, no. 8, pp. 1399-1427. Rye, R.O. (1974): A Comparison of Sphalerite-Galena Sulfur Isotope Temperatures with Filling Temperatures of Fluid Inclusions. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 69, no. 1, pp. 26-32. Rye, R.O. (1993): The Evolution of Magmatic Fluids in the Epithermal Environment; the Stable Isotope Perspective. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 88, no. 3, pp. 733-752. Rye, R.O. and Haffty, J. (1969): Chemical Composition of the Hydrothermal Fluids Responsible for the Lead-Zinc Deposits at Providencia, Zacatecas, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 64, no. 6, pp. 629-643. Rye, R.O. and O'Neil, J.R. (1968): The O'^ Content of Water in Primary Fluid Inclusions from Providencia, North-Central Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 63, no. 3, pp. 232-238 Saenz Reyes, R. (1995): Proyecto Aurocuprffero de Cerro Prieto, Durango, Mexico. In: Anonimous (1995): Trabajos Tecnicos, Geologia, Mineria. Memorias, XXI Convencion AIMMGM, Acapulco, Guerrero, Mexico, Octubre 18-21, 1995, pp. unknown. Sawkins, F.J. (1963): Lead-zinc ore deposition in the light of fluid inclusion studies, Providencia, Zacatecas, Mexico. Princeton University, unpublished Ph.D. Thesis, pp. 144.

395

Sawkins, F.J. (1964); Lead-Zinc Ore Deposition in the Light of Fluid Inclusion Studies, Providence Mine, Zacatecas, Mexico. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 59, no. 5, pp. 883-919. Sawkins, F.J. (1965): Discussion. In: Stemprok, M. [Ed.]: Problems of Postmagmatic Ore Deposition with Special Reference to the Geochemistry of Ore Veins, Vol. 2, Lectures, short communications, discussion; Geological Survey of Czechoslovakia, vol. 2, pp. 447-451. Sawkins, F.J. (1969): Chemical Brecciation, an Unrecognized Mechanism for Breccia Formation? Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 64, no. 6, pp. 613-617. Schmidt, M.W. (1992): Amphibole Composition as a Function of Pressure: an Experimental Calibration of the Al-in-homblende Barometer; Contributions to Mineralogy and Petrology, vol. 110, pp. 304-310. Sedlock, R.L.; Ortega-Gutierrez, F. and Speed, R.C. (1993): Tectonostratigraphic Terranes and Tectonic Evolution of Mexico. Geological Society of America, Special Paper 278, p. 153. Sewell, C.R. (1969): The Candela and Monclova Belts of Igneous Intrusions - A Petrographic Province in Nuevo Leon and Coahuila, Mexico; Geological Society of America Special Paper Abstract, p.273. Shimazaki, H. (1980): Characteristics of Skam Deposits and Related Acid Magmatism in Japan; Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 75, pp. 173-183. Shimazaki, H.; Sato, K. and Chon, H.T. (1981): Metallic Mineralization Associated with Mesozoic Granitic Magmatism in Korea; In: Tsusue, A. [Ed.]: Petrographic Provinces of Granitoids and Associated Metallic Ore Deposits in South Korean Peninsula, pp. 125-153. Silberling, N.J.; Jones, D.L.; Monger, J.W.H.; and Coney, P.J. 1992. Lithotectonic terrane map of the North American Cordillera, In: Miscellaneous Investigations Series, U.S. Geological Survey, p. 2. Sohma T.; Kunugiza, K. and Terabayashi, S. (1990): Hida Metamorphic Belt; 97"* Annual Meeting of the Geological Society of Japan, Field Excursion Guidebook, pp. 26-57. Sohma, T. and Maruyama, S. (1989): Formation of the Japan Sea and the Origin of Fossa Magna; Gekkan Chikyu, vol. 11, pp. 526-531.

396

Stollery, G.; Borcsik, M. and Holland, H.D. (1971): Chlorine in Intrusives; a Possible Prospecting Tool. Economic Geology and the Bulletin of the Society of Economic Geologists, vol. 66, no. 3, pp. 361-367. Stormer, J.C., Jr. (1975); A Practical Two-feldspar Geothermometer; American Mineralogist, vol. 68, pp. 667-674. Streckeisen, A.L. (1976): To Each Plutonic Rock Its Proper Name, Earth-Science Reviews, vol. 12, pp. 1-33. Sun, S.S. (1980): Lead Isotopic Study of Young Volcanic Rocks from Mid-Ocean Ridges, Ocean Island and Island Arcs; Philosophical Transactions, Royal Society of London, Series A, vol. 297, pp. 409-445. Sun, S.S. (1982): Chemical Composition and Origin of the Earth's Primitive Mantle; Geochimica et Cosmochimica Acta, vol. 46; no. 2, pp. 179-192. Swanson, S.E.; Keizer, R.P.; Lyons, J.I. and Clabaugh, S.E. (1978): Tertiary Volcanism and Caldera Development Near Durango City, Sierra Madre Occidental, Mexico; Gological Society of America Bulletin, vol. 89, pp. 1000-1012. Tardy, M. (1974): La Historia Geologica de la Sierra de San Julian, Zacatecas: un Resumen de la Evolucion Estructural del Sector Transversal de Parras al Sur de la Plataforma de CoEihuila, Sierra Madre Oriental; Resumenes de la EH Convencion Geologica Nacional, Sociedad Geologica Mexicana. Tardy, M. (1980): Contribution a I'Etude Geologique de la Sierra Madre Oriental du Mexique. Stratigraphie, Evolution Paleogeographique et Evolution Tectonique sur un Profil du Secteur Transverse de Parras. Organisation et Geodynamique de la Sierra Madre Orientale au Pasaje Domaine Alpin Caraibe - Cordillere Ouestamericaine; Universite Pierre et Marie Curie de Paris, unpublished Ph.D. thesis, p. 459. Tardy, M.; Sigal, J. and Glacon, G. (1974): Bosquejo sobre la Estratigraffa y la Paleogeograffa de los Flysch Cretacicos del Sector Transversal de Parras, Sierra Madre Oriental, Mexico; Institute de Geologia Serie Divulgativa, Universidad Nacional Autonoma de Mexico, no. 2, pp. 12-28. Tardy, M.; Longoria, J.F.; Martinez Reyes, J.; Mitre Salazar, .L.M.; Patino A., M.; Padilla S., R. and Ramirez R., C. (1975): Onservaciones Generales sobre la Estructura de la Sierra Madre Oriental: la Aloctonia del Conjunto Cadena Alta - Altiplano Central, entre Torreon, Coahuila, y San Luis Potosi , S.L.P., Mexico; Institute de Geologia Revista, Universidad Nacional Autonoma de Mexico, no. 1, pp. 1-11.

397

Taylor, H.P., Jr. (1968a): The Oxygen Isotope Geochemistry of Igneous Rocks; Contributions to Mineralogy and Petrology, vol. 29, pp. 1-71. Taylor, H.P., Jr. and Epstein, S. (1962a): Relationship Between '^O/'^O Ratios in Coexisting Minerals of Igneous and Metamorphic Rocks; Part 1, Principles and Experimental Results; Geological Society of America Bulletin, vol. 73, pp. 461480. Taylor, H.P., Jr. and Epstein, S. (1962b): Relationship Between Ratios in Coexisting Minerals of Igneous and Metamorphic Rocks; Part 2, Application to Petrologic Problems; Geological Society of America Bulletin, vol. 73, pp. 675-693. Taylor, S.R. and McLennan, S.M. (1985): The Continental Crust: Its Composition and Evolution; Blackwell Scientific, Oxford, p. 312. Thompson, J.B., Jr. (1982): An Introduction to the Mineralogy and Petrology of the Biopyriboles; In: Veblen, D.R. and Ribbe, P.H.: Amphiboies: Petrology and Experimental Relations, Reviews in Mineralogy, Mineralogical Society of America, vol. 9B, Chapter 3, pp. 141-188. Torres Vargas, R. (1995): A Permo-Triassic Granitic Belt in Mexico, Its Origin and Tectonic Implications; The University of Arizona, unpublished M.Sc. thesis, p. 9. Torres Vargas,R.; Ruiz, J., Patchett, P.J., and Grajales, M. (1993): A Permo-Triassic Granitic Belt in Mexico, Its Origin and Tectonic Implications. Universidad Nacional Autonoma de Mexico, First Circum-Pacific and Circum-Atlantic Terrane Conference, Proceedings, pp. 83-85. Torres-Vargas, R.; Ruiz, J.; Patchett, P.J. and Grajales, M. (1999): A Permo-Triassic Continental Arc in Eastern Mexico: Tectonic Implications for Reconstructions of southern North America.; Geological Society of America, Special Paper 340, pp. 191-196. Triplett, W.H. (1956): The Mazapil Company Mines, Aranzazu and Concepcion del Oro, Zacatecas. XX Congreso Geologico Intemacional, Guia Excursion C-3, Grupo A, no. 2, pp. unknown. Triplett, W.H. (1952): Geology of the Silver-Lead-Zinc Deposits of the AvalosProvidencia District of Mexico. Mining Engineering AIME Transactions, vol. 4, no. 6, pp. 583-593. Troger, W.E. (1971): Optische Bestimmung der Gesteinbildenden Minerale, Teil 1; Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 188.

398

Tsusue, A.; Mizuta, T.; and Min, K.G. (1981): Jurassic and Cretaceous Granitic Rocks in South Korea; In: Tsusue, A. [Ed.]: Petrographic Provinces of Granitoids and Associated Metallic Ore Deposits in South Korean Peninsula, pp. 1-76. Tuta, Z.H. (1980): K-Ar Geochronology of Tin, Mercury and Fluorite Mineralization Associated with Mid-Tertiary Rhyolitic Volcanism in North-Central Mexico; Ohio State University unpublished M.Sc. thesis, Columbus, Ohio, p. 127. Van Middelaar, W.T. (1988): Alteration and Mica Chemistry of the Granitoid Associated with the CanTung Scheelite Skam, Tungsten, Northwest Territories, Canada; University of Georgia unpublished Ph.D. thesis, Athens, Georgia, p. 215. Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Garden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; Jasper, T.; Korte, C.; Pawellek, F.; Podlaha, O.G and Strauss, H. (1999): ^^Sr/^Sr; 6'^C and 5'^0 Evolution of Phanerozoic Seawater; Chemical Geology, vol. 161, pp. 59-88. Wilson, M. (1989): Igneous Petrogenesis; Unwin Hyman, London, p. 466. Wilson, J.L. (1990): Basement Structural Controls on Mesozoic Carbonate Facies in Northeastern Mexico - A Review. International Association of Sedimentologists, Special Publication, vol. 9, pp. 235-255. Wisser, E. (1932): Economic Geology of the Concepcion del Oro District, Zacatecas; unpublished report, p. 52. Wisser, E. (1943): Untitled [comments on the Concepcion del Oro district]; unpublished report, p. 3. Wisser, E. (1944): Notes on Concepcion del Oro, Zacatecas; unpublished report, p. 3. Wodzicki, W.A. (1995): The Evolution of Laramide Igneous Rocks and Pophyry Copper Mineralization in the Cananea District, Sonora, Mexico; The University of Arizona unpublished Ph.D. thesis, Tucson, Arizona, p. 181. Wones, D.R. (1981): Mafic Silicates as Indicators of Intensive Variables in Granitic Magmas; Kozan Chishitsu (Mining Geology), vol. 31; no. 168, pp. 191-212. Wones, D.R. and Eugster, H.P. (1965): Stability of Biotite: Experiment, Theory, and Application; American Mineralogist, vol. 50, pp. 1228-1272. Wones, D.R.; Burns, R.G. and Carroll, B.M. (1971): Eos, Transactions of the American Geophysical Union, vol. 52; no. 4, pp. 369-370. Zen, E.a. (1995): Crustal Magma Generation and Low-Pressure High-Temperature

399

Regional Metamorphism in an Extensional Environment; Possible Application to the Lachlan Belt, Australia; American Journal of Science, vol. 295, no. 7, pp. 851874

Loading...

azu_td_3158075_sip1_

Intrusion-related mineralization in the central sector of the Sierra Madre Oriental, Mexico Item Type text; Dissertation-Reproduction (electronic) A...

10MB Sizes 1 Downloads 0 Views

Recommend Documents

No documents